Concept explainers
To Find: Number of post cards did he buy of each size.
Answer to Problem 7CT
Explanation of Solution
Given: John bought a total of
Let
And
Then
Total post cards
Cost of one small post cards =
Cost of one large post card =
Total amount he spend =
Thus
Equation becomes
Hence,
Chapter 9 Solutions
Algebra: Structure And Method, Book 1
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Pre-Algebra Student Edition
Introductory Statistics
Elementary Statistics: Picturing the World (7th Edition)
Elementary Statistics
Thinking Mathematically (6th Edition)
- 1.2.4. (-) Let G be a graph. For v € V(G) and e = E(G), describe the adjacency and incidence matrices of G-v and G-e in terms of the corresponding matrices for G.arrow_forward1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques, and maximal independent sets. Also find all the maximum paths, maximum cliques, and maximum independent sets.arrow_forward1.2.9. (-) What is the minimum number of trails needed to decompose the Petersen graph? Is there a decomposition into this many trails using only paths?arrow_forward
- 1.2.7. (-) Prove that a bipartite graph has a unique bipartition (except for interchang- ing the two partite sets) if and only if it is connected.arrow_forwardSx. KG A3 is collection of Countin uous function on a to Polgical Which separates Points Srem closed set then the toplogy onx is the weak toplogy induced by the map fx. Prove that using dief speParts Point If B closed and x&B in X then for some xеA fx(x) € fa(B). If (π Xx, prodect) is prodect space KEA S Prove s. BxXx (πh Bx) ≤ πTx B x Prove is an A is finte = (πT. Bx) = πT. Bå KEA XEAarrow_forwardShow that is exist homomor Pick to Subspace Product. to plogy. Prove that Pen Projection map TTB: TTX XB is countiunals and open map but hot closed map.arrow_forward
- @when ever one Point sets in x are closed a collection of functions which separates Points from closed set will separates Point. 18 (prod) is product topological space then VaeA (xx, Tx) is homeomorphic to sul space of the Product space (Txa, prod). KeA © The Bin Projection map B: Tx XP is continuous and open but heed hot to be closed. A collection (SEA) of continuos function oha topolgical Space X se partes Points from closed sets inx iff the set (v) for KEA and Vopen set in Xx from a base for top on x.arrow_forwardSimply:(p/(x-a))-(p/(x+a))arrow_forwardQ1lal Let X be an arbitrary infinite set and let r the family of all subsets F of X which do not contain a particular point x, EX and the complements F of all finite subsets F of X show that (X.r) is a topology. bl The nbhd system N(x) at x in a topological space X has the following properties NO- N(x) for any xX N1- If N EN(x) then x€N N2- If NEN(x), NCM then MeN(x) N3- If NEN(x), MEN(x) then NOMEN(x) N4- If N = N(x) then 3M = N(x) such that MCN then MeN(y) for any уем Show that there exist a unique topology τ on X. Q2\a\let (X,r) be the topology space and BST show that ẞ is base for a topology on X iff for any G open set xEG then there exist A Eẞ such that x E ACG. b\Let ẞ is a collection of open sets in X show that is base for a topology on X iff for each xex the collection B, (BEB\xEB) is is a nbhd base at x. - Q31 Choose only two: al Let A be a subspace of a space X show that FCA is closed iff F KOA, K is closed set in X. الرياضيات b\ Let X and Y be two topological space and f:X -…arrow_forward
- Q1\ Let X be a topological space and let Int be the interior operation defined on P(X) such that 1₁.Int(X) = X 12. Int (A) CA for each A = P(X) 13. Int (int (A) = Int (A) for each A = P(X) 14. Int (An B) = Int(A) n Int (B) for each A, B = P(X) 15. A is open iff Int (A) = A Show that there exist a unique topology T on X. Q2\ Let X be a topological space and suppose that a nbhd base has been fixed at each x E X and A SCX show that A open iff A contains a basic nbdh of each its point Q3\ Let X be a topological space and and A CX show that A closed set iff every limit point of A is in A. A'S A ACA Q4\ If ẞ is a collection of open sets in X show that ẞ is a base for a topology on X iff for each x E X then ẞx = {BE B|x E B} is a nbhd base at x. Q5\ If A subspace of a topological space X, if x Є A show that V is nbhd of x in A iff V = Un A where U is nbdh of x in X.arrow_forward+ Theorem: Let be a function from a topological space (X,T) on to a non-empty set y then is a quotient map iff vesy if f(B) is closed in X then & is >Y. ie Bclosed in bp closed in the quotient topology induced by f iff (B) is closed in x- التاريخ Acy الموضوع : Theorem:- IP & and I are topological space and fix sy is continuous او function and either open or closed then the topology Cony is the quatient topology p proof: Theorem: Lety have the quotient topology induced by map f of X onto y. The-x: then an arbirary map g:y 7 is continuous 7. iff gof: x > z is "g of continuous Continuous function farrow_forwardFor the problem below, what are the possible solutions for x? Select all that apply. 2 x²+8x +11 = 0 x2+8x+16 = (x+4)² = 5 1116arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education