Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 6EAP
A 2.0 kg book is lying on a 0.75-m-high table. You pick it up and place it on a bookshelf 2.25 m above the floor.
- How much work does gravity do on the book?
- How much work does your hand do on the book?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 9 - If a particle’s speed increases by a factor of 3,...Ch. 9 - Prob. 2CQCh. 9 - 3. An elevator held by a single cable is ascending...Ch. 9 - The rope in FIGURE Q9.4 pulls the box to the left...Ch. 9 - 5. A 0.2 kg plastic cart and a 20 kg lead cart...Ch. 9 - A particle moving to the left is slowed by a force...Ch. 9 - 7. A particle moves in a vertical plane along the...Ch. 9 - 8. You need to raise a heavy block by pulling it...Ch. 9 - 9. A ball on a string travels once around a circle...Ch. 9 - A sprinter accelerates from rest. Is the work done...
Ch. 9 - 11. A Spring has an unstretched length of 10cm. It...Ch. 9 - 12. The left end of a spring is attached to a...Ch. 9 - The driver of a car traveling at 60 mph slams on...Ch. 9 - Prob. 14CQCh. 9 - Which has the larger kinetic energy, a 10 g bullet...Ch. 9 - At what speed does a 1000 kg compact car have the...Ch. 9 - 3. A mother has four times the mass of her young...Ch. 9 - 4. A horizontal rope with 15 N tension drags a 25...Ch. 9 - 5. A 25 kg box sliding to the left across a...Ch. 9 - A 2.0 kg book is lying on a 0.75-m-high table. You...Ch. 9 - Prob. 7EAPCh. 9 - Prob. 8EAPCh. 9 - 9. You throw a 5.5 g coin straight down at 4.0 m/s...Ch. 9 - Prob. 10EAPCh. 9 - 12. Evaluate the dot product if
and .
and .
Ch. 9 - 12. Evaluate the dot product if
and .
and .
Ch. 9 - 13. What is the angle ? between vectors and in...Ch. 9 - Prob. 14EAPCh. 9 - Prob. 15EAPCh. 9 - 16. A 25 kg air compressor is dragged up a rough...Ch. 9 - Prob. 17EAPCh. 9 - The two ropes seen in FIGURE EX9.18 are used to...Ch. 9 - 19. The three ropes shown in the bird’s-eye view...Ch. 9 - Prob. 20EAPCh. 9 - Prob. 21EAPCh. 9 - Prob. 22EAPCh. 9 - A particle moving on the x-axis experiences a...Ch. 9 - Prob. 24EAPCh. 9 - A horizontal spring with spring constant 750 N/m...Ch. 9 - 26. A 35-cm-long vertical spring has one end fixed...Ch. 9 - A 10-cm-long spring is attached to the ceiling....Ch. 9 - A 60 kg student is standing atop a spring in an...Ch. 9 -
29. A 5.0 kg mass hanging from a spring scale is...Ch. 9 - A horizontal spring with spring constant 85 N/m...Ch. 9 - 31. One mole (6.02 × 1023 atoms) of helium atoms...Ch. 9 - 32. A 55 kg softball player slides into second...Ch. 9 - A baggage handler throws a 15 kg suitcase along...Ch. 9 -
34. An 8.0 kg crate is pulled 5.0 m up a 30°...Ch. 9 - Justin, with a mass of 30 kg, is going down an...Ch. 9 - Prob. 36EAPCh. 9 - Prob. 37EAPCh. 9 - 38. How much energy is consumed by (a) a 1.2 kW...Ch. 9 - 39. At midday, solar energy strikes the earth with...Ch. 9 - Prob. 40EAPCh. 9 - Prob. 41EAPCh. 9 - Prob. 42EAPCh. 9 - 43. A 1000 kg elevator accelerates upward at 1.0...Ch. 9 - 44. a. Starting from rest, a crate of mass m is...Ch. 9 - Prob. 45EAPCh. 9 - 46. A particle of mass m moving along the x-axis...Ch. 9 -
47. A ball shot straight up with kinetic energy...Ch. 9 - 48. A pile driver lifts a 250 kg weight and then...Ch. 9 - Prob. 49EAPCh. 9 -
50. You’re fishing from a tall pier and have...Ch. 9 - Hook’s law describes an ideal spring. Many real...Ch. 9 -
52. The force acting on a particle is Fx =...Ch. 9 - 53. The gravitational attraction between two...Ch. 9 -
54. An electric dipole consists of two equal...Ch. 9 - Prob. 55EAPCh. 9 -
56. When a 65 kg cheerleader stands on a...Ch. 9 - Prob. 57EAPCh. 9 - Prob. 58EAPCh. 9 -
59. A horizontal spring with spring constant 250...Ch. 9 - 60. A 90 kg firefighter needs to climb the stairs...Ch. 9 - Prob. 61EAPCh. 9 - 62. When you ride a bicycle at constant speed,...Ch. 9 -
63. A farmer uses a tractor to pull a 150 kg...Ch. 9 - Prob. 64EAPCh. 9 - Prob. 65EAPCh. 9 - Prob. 66EAPCh. 9 - In problems 67 through 69 you are given the...Ch. 9 - Prob. 68EAPCh. 9 - Prob. 69EAPCh. 9 - Prob. 70EAPCh. 9 - Prob. 71EAPCh. 9 - Prob. 72EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sled of mass 70 kg starts from rest and slides down a 10 incline 80 m long. It then travels for 20 m horizontally before starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the magnitude of the net work done on the sled by friction?arrow_forwardPhysics Review A team of huskies performs 7 440 J of work on a loaded sled of mass 124 kg, drawing it from rest up a 4.60-m high snow-covered rise while the sled loses 1 520 J due to friction, (a) What is the net work done on the sled by the huskies and friction? (b) What is the change in the sleds potential energy? (c) What is the speed of the sled at the top of the rise? (See Section 5.5.)arrow_forwardA nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forward
- A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forwardA shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?arrow_forward
- A boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d. Figure P5.64arrow_forward. In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forwardThe force acting on a particle is Fx = (8x 16), where F is in newtons anti x is in meters. (a) Make a plot of this force versus x from x = 0 to x = 3.00 m. (b) From your graph, find the net work done by this force on the particle as it moves from x = 0 to x = 3.00 m.arrow_forward
- What average power is generated by a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forward(a) A force F=(4xi+3yj), where F is in newtons and x and y are in meters, acts on an object as the object moves in the x direction from the origin to x = 5.00 m. Find the work W=Fdr done by the force on the object. (b) What If? Find the work W=Fdr done by the force on the object if it moves from the origin to (5.00 m, 5.00 m) along a straightline path making an angle of 45.0 with the positive x axis. Is the work done by this force dependent on the path taken between the initial and final points?arrow_forwardExplorers in the jungle find an ancient monument in the shape of a large isosceles triangle as shown in Figure P9.25. The monument is made from tens of thousands of small stone blocks of density 3 800 kg/m3. The monument is 15.7 m high and 64.8 m wide at its base and is everywhere 3.60 m thick from front to back. Before the monument was built many years ago, all the stone blocks lay on the ground. How much work did laborers do on the blocks to put them in position while building the entire monument? Note: The gravitational potential energy of an objectEarth system is given by Ug = MgyCM, where M is the total mass of the object and yCM is the elevation of its center of mass above the chosen reference level.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY