Concept explainers
(a)
Interpretation:
The packing efficiency of the simple cubic cell (1atom/cell) is to be determined.
Concept Introduction:
Packing efficiency of the cubic cell is calculated by the following formula:
(a)

Answer to Problem 62QAP
The packing efficiency of the simple cubic cell (1atom/cell) is 52 %.
Explanation of Solution
Given:
The volume of one atom is
The percentage of the total of solid occupied by the spherical atoms in the cell is said to be packing efficiency.
The mathematical formula for the packing efficiency is:
In cubic cell, edge length is denoted as ‘s’ and the radius as ‘r’.
The relation between edge length and radius of the simple cubic cell is:
Put the above values in (1):
And the relation between r and s:
2r = s
There is only one atom present in the simple cubic cell.
Therefore,
Packing efficiency = 52 %.
(b)
Interpretation:
The packing efficiency of face-centered cubic cell (4 atoms/cell) is to be determined.
Concept Introduction:
Packing efficiency of the cubic cell is calculated by the following formula:
(b)

Answer to Problem 62QAP
The packing efficiency of the face-centered cubic cell (4atom/cell) is 74%.
Explanation of Solution
Given:
The volume of one atom is
The percentage of the total of solid occupied by the spherical atoms in the cell is said to be packing efficiency.
The mathematical formula for the packing efficiency is:
In cubic cell, edge length is denoted as ‘s’ and the radius as ‘r’.
The relation between edge length and radius of the face-centered cubic cell is:
Put the above values in (1):
And the relation between r and s:
There are four atoms present in the face-centered cubic cell.
Therefore,
Packing efficiency = 74 %
(c)
Interpretation:
The packing efficiency of a body-centered cubic cell (2 atoms/cell) is to be determined.
Concept Introduction:
Packing efficiency of the cubic cell is calculated by the following formula:
(c)

Answer to Problem 62QAP
The packing efficiency of a body-centered cubic cell (2 atom/cell) is 68 %.
Explanation of Solution
Given:
The volume of one atom is
The percentage of the total of solid occupied by the spherical atoms in the cell is said to be packing efficiency. The mathematical formula for the packing efficiency is:
In cubic cell, edge length is denoted as ‘s’ and the radius as ‘r’.
The relation between edge length and radius of the body-centered cubic cell is:
Put the above values in (1):
The relation between r and s:
There are two atoms present in the body-centered cubic cell.
Therefore,
Packing efficiency = 68 %
Want to see more full solutions like this?
Chapter 9 Solutions
OWLV2 FOR MASTERTON/HURLEY'S CHEMISTRY:
- CH, CH CH₂ CH₂ Phytyl side chain 5. What is the expected order of elution of compounds A-D below from a chromatography column packed with silica gel, eluting with hexane/ethyl acetate? C D OHarrow_forwardPlease analze my gel electrophoresis column of the VRK1 kinase (MW: 39.71 kDa). Attached is the following image for the order of column wells and my gel.arrow_forward2.0arrow_forward
- Write the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 5 6 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! ☐arrow_forwardCompare these chromatograms of three anti-psychotic drugs done by HPLC and SFC. Why is there the difference in separation time for SFC versus HPLC? Hint, use the Van Deemter plot as a guide in answering this question. Why, fundamentally, would you expect a faster separation for SFC than HPLC, in general?arrow_forwardA certain inorganic cation has an electrophoretic mobility of 5.27 x 10-4 cm2s-1V-1. The same ion has a diffusion coefficient of 9.5 x 10-6cm2s-1. If this ion is separated from cations by CZE with a 75cm capillary, what is the expected plate count, N, at an applied voltage of 15.0kV? Under these separation conditions, the electroosmotic flow rate was 0.85mm s-1 toward the cathode. If the detector was 50.0cm from the injection end of the capillary, how long would it take in minutes for the analyte cation to reach the detector after the field was applied?arrow_forward
- 2.arrow_forwardPlease solve for the following Electrochemistry that occursarrow_forwardCommercial bleach contains either chlorine or oxygen as an active ingredient. A commercial oxygenated bleach is much safer to handle and less likely to ruin your clothes. It is possible to determine the amount of active ingredient in an oxygenated bleach product by performing a redox titration. The balance reaction for such a titration is: 6H+ +5H2O2 +2MnO4- à 5O2 + 2Mn2+ + 8H2O If you performed the following procedure: “First, dilute the Seventh Generation Non-Chlorine Bleach by pipetting 10 mL of bleach in a 100 mL volumetric flask and filling the flask to the mark with distilled water. Next, pipet 10 mL of the diluted bleach solution into a 250 mL Erlenmeyer flask and add 20 mL of 1.0 M H2SO4 to the flask. This solution should be titrated with 0.0100 M KMnO4 solution.” It took 18.47mL of the KMnO4 to reach the endpoint on average. What was the concentration of H2O2 in the original bleach solution in weight % assuming the density of bleach is 1g/mL?arrow_forward
- 10.arrow_forwardProper care of pH electrodes: Why can you not store a pH electrode in distilled water? What must you instead store it in? Why?arrow_forwardWrite the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 569 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! §arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





