Predict/Calculate Two air-track carts move toward one another on an air track. Cart 1 has a mass of 0.28 kg and a speed of 0.97 m/s Cart 2 has a mass of 0.64 kg. (a) What speed must cart 2 have if the total momentum of the system is to be zero? (b) Since the momentum of the system is zero, does it follow that the kinetic energy of the system is also zero? (c) Verify your answer to part (b) by calculating the system’s kinetic energy.
Predict/Calculate Two air-track carts move toward one another on an air track. Cart 1 has a mass of 0.28 kg and a speed of 0.97 m/s Cart 2 has a mass of 0.64 kg. (a) What speed must cart 2 have if the total momentum of the system is to be zero? (b) Since the momentum of the system is zero, does it follow that the kinetic energy of the system is also zero? (c) Verify your answer to part (b) by calculating the system’s kinetic energy.
Predict/Calculate Two air-track carts move toward one another on an air track. Cart 1 has a mass of 0.28 kg and a speed of 0.97 m/s Cart 2 has a mass of 0.64 kg. (a) What speed must cart 2 have if the total momentum of the system is to be zero? (b) Since the momentum of the system is zero, does it follow that the kinetic energy of the system is also zero? (c) Verify your answer to part (b) by calculating the system’s kinetic energy.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.