When a substance changes from a solid to a liquid or from a liquid to a gas whether intermolecular forces changes or not has to be analyzed and explained. The reason for a substance to undergo phase change has to be identified. Concept introduction: Matter exists in three distinct physical forms – solid, liquid and gas. There are two types of interactions present in matter – intramolecular meaning, “within the molecule” and intermolecular meaning “between the molecules”. Intramolecular force refers to the type of bonding that holds the atoms or ions together to form a stable molecule. Intermolecular force refers to the type of interaction that exists between the so formed molecules by bonding. The nature and strength of the intermolecular forces varies in solids, liquids and gases. The classification of intermolecular force is summarized as follows – Figure 1 There are three types of intermolecular forces - London dispersion forces, dipole-dipole forces and hydrogen bonding. These forces are collectively known as Van der Waals forces . London dispersion forces exist in non-polar covalent compounds . Dipole-dipole forces present in polar covalent compounds . Hydrogen bonding is formed in polar covalent compounds containing Hydrogen and other high electronegativity like Fluorine, Oxygen or Nitrogen . It is relatively the strongest one.
When a substance changes from a solid to a liquid or from a liquid to a gas whether intermolecular forces changes or not has to be analyzed and explained. The reason for a substance to undergo phase change has to be identified. Concept introduction: Matter exists in three distinct physical forms – solid, liquid and gas. There are two types of interactions present in matter – intramolecular meaning, “within the molecule” and intermolecular meaning “between the molecules”. Intramolecular force refers to the type of bonding that holds the atoms or ions together to form a stable molecule. Intermolecular force refers to the type of interaction that exists between the so formed molecules by bonding. The nature and strength of the intermolecular forces varies in solids, liquids and gases. The classification of intermolecular force is summarized as follows – Figure 1 There are three types of intermolecular forces - London dispersion forces, dipole-dipole forces and hydrogen bonding. These forces are collectively known as Van der Waals forces . London dispersion forces exist in non-polar covalent compounds . Dipole-dipole forces present in polar covalent compounds . Hydrogen bonding is formed in polar covalent compounds containing Hydrogen and other high electronegativity like Fluorine, Oxygen or Nitrogen . It is relatively the strongest one.
Solution Summary: The author explains the nature and strength of intermolecular forces in solids, liquids and gases.
Definition Definition Substance that constitutes everything in the universe. Matter consists of atoms, which are composed of electrons, protons, and neutrons. Different atoms combine together to give rise to molecules that act as a foundation for all kinds of substances. There are five states of matter based on their energies of attraction: solid, liquid, gases, plasma, and BEC (Bose-Einstein condensates).
Chapter 9, Problem 5ALQ
Interpretation Introduction
Interpretation:
When a substance changes from a solid to a liquid or from a liquid to a gas whether intermolecular forces changes or not has to be analyzed and explained.
The reason for a substance to undergo phase change has to be identified.
Concept introduction:
Matter exists in three distinct physical forms – solid, liquid and gas. There are two types of interactions present in matter – intramolecular meaning, “within the molecule” and intermolecular meaning “between the molecules”.
Intramolecular force refers to the type of bonding that holds the atoms or ions together to form a stable molecule. Intermolecular force refers to the type of interaction that exists between the so formed molecules by bonding.
The nature and strength of the intermolecular forces varies in solids, liquids and gases. The classification of intermolecular force is summarized as follows –
Figure 1
There are three types of intermolecular forces - London dispersion forces, dipole-dipole forces and hydrogen bonding. These forces are collectively known as Van der Waals forces. London dispersion forces exist in non-polar covalent compounds. Dipole-dipole forces present in polar covalent compounds. Hydrogen bonding is formed in polar covalent compounds containing Hydrogen and other high electronegativity like Fluorine, Oxygen or Nitrogen. It is relatively the strongest one.
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?
Chapter 9 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card