PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 39P
(a)
To determine
The angle swept out by the Mars −Sun line during the Earth -year.
(b)
To determine
The frequency of the Mars and the Sun to be in opposition to the Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
According to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.82 x 105 km. The Moon orbits the
Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month).
Calculate the orbital velocity of the Moon in m/s.
According to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.92 x 105 km. The Moon orbits the
Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month).
Calculate the orbital velocity of the Moon in m/s.
Answer:
Choose...
Mars has an orbital radius of 1.523 AU and an orbital period of 687.0 days. What is its average speed v in SI units? (1 AU is the astronomical unit, the mean distance between the Sun and the Earth, which is 1.496×1011 m)
a. 0.00221 AU/day
b. 3838 m/s
c. 0
d. 1.28×10−9 m/s
Chapter 9 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - Prob. 53PCh. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Prob. 67PCh. 9 - Prob. 68PCh. 9 - Prob. 69PCh. 9 - Prob. 70PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - Prob. 77PCh. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 88PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Prob. 108PCh. 9 - Prob. 109PCh. 9 - Prob. 110PCh. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 118PCh. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - Prob. 123PCh. 9 - Prob. 124PCh. 9 - Prob. 126PCh. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - Prob. 129P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Comet Halley (Fig. P11.21) approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 1011 m is the mean EarthSun distance.) How far from the Sun will Halleys comet travel before it starts its return journey?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forward
- Show that for eccentricity equal to one in Equation 13.10 for conic sections, the path is a parabola. Do this by substituting Cartersian coordinates, x and y, for the polar coordinates, r and , and showing that it has the general form for a parabola, x=ay2+by+c .arrow_forwardThe radius of the Earth R_{E} = 6.378 * 10 ^ 6 m and the acceleration due to gravity at its surface is 9.81m / (s ^ 2) Calculate the altitude above the surface of earth in meters , at which the acceleration due to gravity is g= 1.2 m/s^2arrow_forwardConsider the Earth's orbit around the Sun to be circular with radius R = 9.30 x 107 mi and it takes 365 days to complete one revolution. What is the distance Earth traveled for one revolution (circumference of a circle is 2??2πR )?arrow_forward
- Venus and Earth both orbit the Sun. Assuming the orbits of these two planets are circles, find the ratio between their speeds in terms of their semi-major axes. Given that Earth's speed is 29.8 km s−1, find the speed of Venus as it orbits the Sun.arrow_forwardAccording to Lunar Laser Ranging experiments the average distance L M from the Earth to the Moon is approximately 3.85 X 105 km. The Moon orbits the Earth and completes one revolution in approximately 27.5 days (a sidereal month). Calculate the mass of the Earth and provide your answer in units of 1024 kg. For example, if your answer is 2.7×1024 enter 2.7.arrow_forwardPlanet X rotates in the same manner as the earth, around an axis through its north and south poles, and is perfectly spherical. An astronaut who weights 943.0N on the earth weights 915.0N at the north pole of Planet X and 850.0N at its equator. The distance from the north pole to the equator is 18,850 km., measured along the surface of Planet X. (a) How long is the day on Planet X? (b) if a 45, 000kg satellite is placed in a circular orbit 2000km above the surface of Planet X, what will be its orbital period.arrow_forward
- The Moon has a period of 27.3 days and a mean distance of 3.9x105 km from its center to the center of Earth. a)Use Kepler's laws to find the period of a satellite in orbit 6.70x 10 km from the center of Earth. b) How far above Earth's surface is this satellite?arrow_forwardThe orbital period of the Earth and Mars are Pg = 365.26 d and P respectively. Assuming circular orbits, the synodic period P, for two planets to be at the same angular position from the Sun can be found using the equation 1 = 686.97 d, %3D Pe Pe a) The last opposition of Mars occurred on 13 Oct 2020. Using the information above, calculate the interval between two consecutive Martian oppositions, and estimate the date of its next opposition. b) It is said that Mars at oppositions near its perihelion occur roughly once every 15 years, with the last event occurring on 27 Jul 2018. Using the synodie period derived, find a more accurate interval, and estimate the date for the next time this event occurs. c) The actual dates for the next Martian opposition and opposition at perihelion are 8 Dec 2022 and 15 Sep 2035, respectively. State two reasons why your estimations may have differed from these dates. In stage 10 of the evolution of a Sun-like star, helium fusion occurs. Write down the…arrow_forwardPlanet X rotates in the same manner as the earth, around an axis through its north and south poles, and is perfectly spherical. An astronaut who weighs 943.0 NN on the earth weighs 920.0 NN at the north pole of Planet X and only 860.0 NN at its equator. The distance from the north pole to the equator is 18,850 kmkm, measured along the surface of Planet X. How long is the day on Planet X? Express your answer in hours. If a 45,000 kgkg satellite is placed in a circular orbit 3000 kmkm above the surface of Planet X, what will be its orbital period? Express your answer in seconds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY