PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 120P
(a)
To determine
ToCalculate: The value of the force constant.
(b)
To determine
ToCalculate: Thework which is required to bring the system from rest to an angular speed of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform disk with mass m = 8.75 kg and radius R = 1.41 m lies in
the x-y plane and centered at the origin. Three forces act in the +y-
direction on the disk: 1) a force 315 N at the edge of the disk on
the +x-axis, 2) a force 315 N at the edge of the disk on the -y-axis,
and 3) a force 315 N acts at the edge of the disk at an angle 0 =
38° above the -x-axis.
+y
+x
F3
IF,
F2
A uniform disk with mass m = 8.57 kg and radius R = 1.36 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 338 N at the edge of the disk on the +x-axis, 2) a force 338 N at the edge of the disk on the –y-axis, and 3) a force 338 N acts at the edge of the disk at an angle θ = 31° above the –x-axis.
1) What is the x-component of the net torque about the z axis on the disk?
2) What is the magnitude of the angular acceleration about the z axis of the disk?
3) If the disk starts from rest, what is the rotational energy of the disk after the forces have been applied for t = 1.6 s?
Problem 9: A thin cylindrical ring starts from rest at a height hj = 75 m. The ring has a
radius R = 46 cm and a mass M =2 kg.
R
h,
h,
Chapter 9 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - Prob. 53PCh. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Prob. 67PCh. 9 - Prob. 68PCh. 9 - Prob. 69PCh. 9 - Prob. 70PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - Prob. 77PCh. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 88PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Prob. 108PCh. 9 - Prob. 109PCh. 9 - Prob. 110PCh. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 118PCh. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - Prob. 123PCh. 9 - Prob. 124PCh. 9 - Prob. 126PCh. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - Prob. 129P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please answer the question correctlyarrow_forwardIn the figure, a small disk of radius r-3.00 cm has been glued to the edge of a larger disk of radius R-6.00 cm so that the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point O at the center of the larger disk. The disks both have a uniform density (mass per unit volume) of 1.40 x 103 kg/m³ and a uniform thickness of 6.00 mm. What is the rotational inertia of the two-disk assembly about the rotation axis through O? Number i 000172 Units kg-m^2arrow_forwardA solid uniform 45-kg ball of diameter 32.0 cm is supported against a vertical, frictionless wall with a string of length 30.0 cm as shown below. Find the tension in the string.arrow_forward
- A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a point on the star's equator to make one complete revolution around the axis of rotation. After the star undergoes a supernova explosion, the stellar core, which had a radius of 1.0 x 104 km, collapses into a neutron star of radius 3.0 km. Determine the period of rotation of the neutron star.arrow_forwardA spindle is wrapped with a very fine silk thread and is sitting initially at rest on a horizontal table. The outer radius of the spindle is 10cm and the total mass of the spindle with the thread is 100 grams. You begin to pull on the thread with a constant force at an angle of 90 degrees to radius of the spindle. The thread is applying this force a distance of 5 cm from the center of the spindle. After the spindle has rolled 1m without slipping the total kinetic energy is 2 joules and the angular velocity is 2 rads/sec. A. What is the moment of inertia of the spindle? Assuming that the distance from the center of the spindle the thread is pulling is constant and the thread's mass can be ignored. B. Assuming that the coefficient of static friction is 0.5, what is the force of tension on the thread?arrow_forwardA solid cylinder has length L = 14 cm and radius R = 2 cm. The center of one face of the cylinder is located at the origin and the cylinder’s axis lies along the positive x-axis. The mass density of the cylinder varies along its length and is given by the function: ρ(x) = Ax2 + Bx + C, where A = 13.5 kg/m5, B = 5.2 kg/m4, and C = 14.2 kg/m3. Consider a thin slice of the cylinder that is a disk located at distance x from the origin and having thickness dx. Enter an expression for the mass of this disk in terms of the defined quantities and dx. Integrate the expression you entered in part (a) and enter an expression for the mass of the whole cylinder in terms of the defined quantities. Calculate the mass of the cylinder, in grams. Enter an expression for the location of the cylinder’s center of mass along the x-axis, in terms of the defined quantities. Calculate the location of the cylinder’s center of mass along the x-axis, in centimeters.arrow_forward
- Problem 1: Two uniform solid spheres, each with mass M = 0.80-kg and radius R = 0.080- m, are connected by a short, light rod that is along a diameter of each sphere and are at rest on a horizontal tabletop. A spring with force constant k 160 N has one end m attached to the wall and the other end attached to a frictionless ring that passes over the rod at the center of mass of the spheres, which is midway between the centers of the two spheres. The spheres are each pulled the same distance from the wall, stretching the spring, and released. There is sufficient friction between the tabletop and the spheres for the spheres to roll without slipping as the move back and forth on the end of the spring. Show that the motion of the center of mass of the spheres is SHM and find the period.arrow_forwardTorque You are playing with the masking tape that came in your lab box. This tape has a thickness that is not small compared to the radius. You measure it and it has an outer radius of 6.40 cm and an inner radius of 3.95 cm. You weigh the tape roll and find that it has a mass of 79.5 g. Now you roll the tape like you would a hoop (Rolling tape 1 (00:05)). The video illustrates the idea of the motion - please do NOT use it for numerical values. You find that the tape starts from rest, and has a torque applied when you push on it with your finger. You push on the outer edge (perpendicular to the radial direction). This causes the tape to accelerate. After 0.75 seconds, you find that the tape has an angular velocity of 53.0 rpm (rotations / minute). What is the Force you applied to the tape to start the rotation? Your answer should have the following: 2 Decimal Places Correct SI Units Appropriate Signs for Vector quantity answers Answers must be in the following format: Written out and…arrow_forwardA conical pendulum consists of a mass of 0.5 kg attached at one end of a sting. The other end is fixed. As the mass moves in a circular path of radius 0.7 m, the string traces out the surface of a cone. What is the angle that the string makes with the ceiling?arrow_forward
- A uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.759 m and 1.31 kg, respectively. A force of constant magnitude F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of F that will accelerate the rod from rest to an angular speed of 6.69 rad/s in 8.49 s. F =arrow_forwardChapter 10, Problem 069 In the figure, a small disk of radius r=4.00 cm has been glued to the edge of a larger disk of radius R=7.00 cm so that the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point O at the center of the larger disk. The disks both have a uniform density (mass per unit volume) of 1.40 x 103 kg/m3 and a uniform thickness of 6.00 mm. What is the rotational inertia of the two-disk assembly about the rotation axis through O? Number Units the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Workarrow_forwardPlease help mearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License