PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 24P
To determine
Loss in rotational energy is equivalent to the power output of 100000 stars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.5×10−333.5×10^-3 s, radius 10 km. And suppose its mass is 2.1×10302.1×10^30 kg. The pulsar's rotational period will increase over time due to the release of electromagnetic radiation, which doesn't change its radius but reduces its rotational energy.
A. What is the angular momentum of the pulsar? Give your answer in the scientific notation, in the normalized form.
L = x 10 js
B. Suppose the angular velocity decreases at a rate of 4.7×10−144.7×10-14 rad/s2. What is the magnitude of the torque on the pulsar? Give your answer in the scientific notation, in the normalized form.
Tnet = x 10 N m
A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.5×10−333.5×10-3 s, radius 10 km. And suppose its mass is 2.5×10302.5×1030 kg. The pulsar's rotational period will increase over time due to the release of electromagnetic radiation, which doesn't change its radius but reduces its rotational energy.
What is the angular momentum of the pulsar? Give your answer in the scientific notation, in the normalized form.L=L= ×10×10 J s
Suppose the angular velocity decreases at a rate of 7.4×10−147.4×10-14 rad/s2. What is the magnitude of the torque on the pulsar? Give your answer in the scientific notation, in the normalized form.τnet=τnet= ×10×10 N m
Suppose that the Sun runs out of nuclear fuel and suddenly collapses to form a white dwarf
star. The size shrinks and became as big as earth. Assuming that there is no loss in mass and it
maintained to be a solid sphere, what would be the little white dwarf star's rotation
period. The present rotation of the sun is about 25 days.
Earth's radius = 6.37x10^6
Sun's radius = 6.96x10^8
Chapter 9 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - Prob. 53PCh. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Prob. 67PCh. 9 - Prob. 68PCh. 9 - Prob. 69PCh. 9 - Prob. 70PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - Prob. 77PCh. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 88PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Prob. 108PCh. 9 - Prob. 109PCh. 9 - Prob. 110PCh. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 118PCh. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - Prob. 123PCh. 9 - Prob. 124PCh. 9 - Prob. 126PCh. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - Prob. 129P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardA bird flies overhead from where you stand at an altitude of 300.0 m and at a speed horizontal to the ground of 20.0 m/s. The bird has a mass of 2.0 kg. The radius vector to the bird makes an angle with respect to the ground. The radius vector to the bird and its momentum vector lie in the xy-plane. What is the bird’s angular momentum about the point where you are standing?arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g (Fig. P10.52). A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a test to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening.arrow_forward
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardA star that has the same mass and radius as the Sun rotates at an angular velocity 1.2 revolutions per month. The star collapses into a white dwarf that has a radius of 3.0 km. What is its angular velocity after the collapse?arrow_forwardThe earth moves about the sun in an elliptical orbit where angular momentum about the sun is conserved. Earth's distance from the sun ranges from 0.983 AU (at perihelion, the closest point) to 1.017 AU (at aphelion, the farthest point). The AU is a unit of distance. If the orbital speed of Earth at aphelion is v, what is the orbital speed of Earth at perihelion?arrow_forward
- A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a point on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a supernova explosion, the stellar core, which had a radius of 1.0 × 104 km, collapses into a neutron star of radius 10.0 km. Determine the period of rotation of the neutron star.arrow_forwardThe core of a star collapses during a supernova, forming a neutron star. Angular momentum of the core is conserved, and so the neutron star spins rapidly. If the initial core radius is 5.0 X 105 km and it collapses to 10.0 km, find the neutron star’s angular velocity in revolutions per second, given the core’s angular velocity was originally 1 revolution per 30.0 days.arrow_forwardA star rotates in a circular orbit about the center of its galaxy. The radius of the orbit is 3.7 x 102⁰ m, and the angular speed of the star is 6.8 x 10-15 rad/s. How long (in years) does it take for the star to make one revolution around the center?arrow_forward
- When a star collapses it significantly shrinks in size and spins up. Consider a star with a mass of M = 2.2×1030 kg and an initial radius of R₁ = 6.8×105 km. If the initial period of rotation of the star is T₁ = 28.9 days, find the new rotational period after it collapses to a final radius of Rf = 6.8×10³ km. Treat the star before and after the collapse as a solid sphere with uniform mass distribution (which is not true, of course, but good enough for an estimation). The new rotational period of the star, Tf = Find the ratio between the final and initial rotational kinetic energies of the star. The factor by which the kinetic energy of the star increases, KE₁/KE₁ Units km = Units Select an answer ✓ Units N X The increase in the rotational kinetic energy of the star comes from gravity. How much work is done by the gravity force while collapsing the star? The work done by gravity, W = ||arrow_forwardA star has a mass of 1.03 x 1030 kg and is moving in a circular orbit about the center of its galaxy. The radius of the orbit is 2.4 x 104 light-years (1 light-year = 9.5 x 1015 m), and the angular speed of the star is 1.0 x 10-15 rad/s. (a) Determine the tangential speed of the star. (b) What is the magnitude of the net force that acts on the star to keep it moving around the center of the galaxy?arrow_forwardA star has a mass of 2.62 x 10³0 kg and is moving in a circular orbit about the center of its galaxy. The radius of the orbit is 3.0 x 104 light-years (1 light-year = 9.5 x 1015 m), and the angular speed of the star is 1.6 x 10-15 rad/s. (a) Determine the tangential speed of the star. (b) What is the magnitude of the net force that acts on the star to keep it moving around the center of the galaxy? (a) Number i (b) Number i Units Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License