
Concept explainers
(a)
To Calculate: The initial
(a)

Answer to Problem 118P
Explanation of Solution
Given information:
Height of each vertical beam
Width of each vertical beam
Length horizontal cross-member
The mass of the vertical beam
The mass of the horizontal beam
Formula Used:
From Newton’s second law of motion
Where, F is the net force, m is the mass and a is the acceleration.
Calculation:
Here, one of the structures initially in its upright position. But later, it is about to strike the floor. The moments about the axis of rotation (a line through point P) can be considered.
Use the parallel-axis theorem to find the moments of inertia of the two parts of this composite structure. Let the numeral 1 denote the vertical member and the numeral 2 the horizontal member.
Apply Newton’s second law of motion in rotational form to the structure to express its angular acceleration in terms of the net torque causing it to fall and its moment of inertia with respect to point P.
Taking clockwise rotation to be positive, use
Here,
The mass of the vertical beam =
mass of the horizontal beam =
Length of vertical beam =
Width of the beam =
Acceleration of the beam =
Gravitational acceleration =
Because
Conclusion:
The initial angular acceleration of the structure is
(b)
ToCalculate: The magnitude of the initial linear acceleration of the right end of the horizontal beam.
(b)

Answer to Problem 118P
Explanation of Solution
Given information:
Height of each vertical beam
Width of each vertical beam
Length horizontal cross-member
The mass of the vertical beam
The mass of the horizontal beam
The initial angular acceleration of the structure is
Formula used:
From Newton’s second law of motion
Where, F is the net force, m is the mass and a is the acceleration.
Linear acceleration (a) in terms of angular acceleration (
Calculation:
Conclusion:
The magnitude of the initial linear acceleration of the right end of the horizontal beam is
(c)
To explain: The horizontal component of the initial linear acceleration be at this same location.
(c)

Answer to Problem 118P
Explanation of Solution
Given information:
Height of each vertical beam
Width of each vertical beam
Length horizontal cross-member
The mass of the vertical beam
The mass of the horizontal beam
The magnitude of the initial linear acceleration of the right end of the horizontal beam is
Formula used:
Horizontal component of acceleration is
Calculation:
Conclusion:
The horizontal component of the initial linear acceleration be at this same location is
(d)
To Calculate: The beam’s rotational speed when they caught it.
(d)

Answer to Problem 118P
Explanation of Solution
Given information:
Height of each vertical beam
Width of each vertical beam
Length horizontal cross-member
The mass of the vertical beam
The mass of the horizontal beam
Formula used:
Rotational kinetic energy:
Where, I is the moment of inertia and
Potential energy,
Where, m is the mass, g is the acceleration due to gravity and h is the height.
Calculation:
By applying the conservation of mechanical energy to the beam:
Conclusion:
The beam’s rotational speed when they caught it is
Want to see more full solutions like this?
Chapter 9 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





