Concept explainers
a. Using only the valence atomic orbitals of a hydrogen atom and a fluorine atom, and following
the model of Figure 9.46 C, how many MOs would you expect for the HF molecule?
b. How many of the MOs from part (a) would be occupied by electrons?
c. It turns out that the difference in energies between the valence atomic orbitals of H and F are sufficiently different that we can neglect the interaction of the Is orbital of hydrogen with the 2s orbital of fluorine. The Is orbital of hydrogen will mix only with one 2P orbital of fluorine. Draw pictures showing the proper orientatlon of all three 2P orbitals on F interacting with a Is orbital on H. Which of the 2P orbitals can actually make a bond with a Is orbital, assuming that the atoms lie on the z-axis?
d. In the most accepted picture of HF, all the other atomic orbitals on fluorine move over at the
same energy into the molecular orbital energy-level diagram for I-IF. These are called "nonbonding orbitals." Sketch the energy-level diagram for HF using this information and calculate the bond order, (Nonbonding electrons do not contribute to bond order.)
e. Look at the Lewis structure for HE, Where are the nonbonding electrons?
Trending nowThis is a popular solution!
Chapter 9 Solutions
Chemistry: The Central Science (14th Edition)
- A buffered solution containing dissolved aniline, CH,NH2, and aniline hydrochloride, CH, NH, Cl, has a pH of 5.41. Determine the concentration of CH, NH in the solution if the concentration of CH, NH, is 0.305 M. The pK of aniline is 9.13. [CHẠNH] = Calculate the change in pH of the solution, ApH, if 0.375 g NaOH is added to the buffer for a final volume of 1.40 L. Assume that any contribution of NaOH to the volume is negligible. ApH = Marrow_forwardShow work. don't give Ai generated solutionarrow_forwardShow work. don't give Ai generated solutionarrow_forward
- 1. Polyester Formation a. Draw the structure of the polyester formed (Seabacoyl Chloride + Ethylene Glycol). (Insert scanned hand-drawn structure or ChemDraw image.) b. What molecules are eliminated in this condensation reaction?arrow_forwardDon't used Ai solutionarrow_forwardWhat is the absorption spectrum of a solution of naphthalene in benzene , and the vibronic transitions responsible for the vibrational fine structure ?arrow_forward
- 3. Titanium(III) chloride can be used to catalyze the polymerization of ethylene. It is prepared by hydrogen reduction of Titanium(IV) chloride. Reaction of hydrogen gas with titanium(IV) chloride gas produces solid titanium(III) chloride and hydrogen chloride gas. (a) Write a BALANCED chemical reaction for the preparation of titanium(III) chloride (b) A 250 L reaction vessel at 325°C is filled with hydrogen gas to a pressure of 1.3 atm. Titanium(IV) chloride is then added to bring the total pressure to 3.00 atm. How many grams of titanium(III) chloride will be produced after completion of the reaction? (c) What will be the pressure of the resulting hydrogen chloride gas that is also produced?arrow_forward1. Sodium azide (NaN3) is the primary chemical substance used in automobile air bags. Upon impact, the decomposition of sodium azide is initiated to produce sodium metal and nitrogen gas which then inflates the bag. How many liters of nitrogen gas are produced at 1.15 atm and 30.0°C when 145.0 grams of sodium azide decomposes? 2. Calcium carbonate (such as that in limestone) reacts with aqueous hydrochloric acid to produce carbon dioxide, aqueous calcium chloride and water. How many liters of carbon dioxide are produced at 20°C and 745 torr when 3.583 grams of calcium carbonate is dissolved in solution containing 1.550 grams of hydrochloric acid?arrow_forwardShow all work (where appropriate) for full credit. 1. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from a 500 mL, 0.0500 M stock solution. 2. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from 100 g of solid NaCl.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning