
A 15° wedge is forced under a 50-kg pipe as shown. The coefficient of static friction at all surfaces is 0.20. (a) Show that slipping will occur between the pipe and the vertical wall. (b) Determine the force P required to move the wedge.
Fig. P8.64 and P8.65
(a)

Show that the slipping will occur between the pipe and the vertical wall.
Explanation of Solution
Given information:
The mass of the pipe is
The value of angle
The coefficient of static friction at all surfaces is
Calculation:
Find the weight (W) of the pipe using the relation.
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 50 kg for m and
Show the free-body diagram of the pipe as in Figure 1.
Find the friction force at point A using the relation.
Here, the normal force at point A is
Find the normal force at point A by taking moment about point B.
Substitute 490.5 N for W, 0.20 for
Find the friction force at point B
Substitute 490.5 N for W, 0.20 for
Find the normal force at point B
Substitute 490.5 N for W, 0.20 for
Find the maximum friction force at point B using the relation.
Substitute 0.20 for
The friction force at point B is less than the maximum friction force at point B.
Therefore, the slipping will not occur at point B and the slipping will occur between the pipe and the vertical wall.
(b)

Find the force P required to move the wedge.
Answer to Problem 8.64P
The force P required to move the wedge is
Explanation of Solution
Given information:
The mass of the pipe is
The value of angle
The coefficient of static friction at all surfaces is
Calculation:
Show the free-body diagram of the wedge as in Figure 2.
Find the normal force
Substitute 554.155 N for
Find the force P by resolving the horizontal component of forces.
Substitute 554.155 N for
Therefore, the force P required to move the wedge is
Want to see more full solutions like this?
Chapter 8 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
- 3. Determine the flow rate through the pipe line show in the figure in ft³/s, and determine the pressures at A and C, in psi. 5' B C 12° 20' D 6"d 2nd- Water Aarrow_forward5. A flow is field given by V = x²₁³+xy, and determine 3 ·y³j- (a) Whether this is a one, two- or three-dimensional flow (b) Whether it is a possible incompressible flow (c) Determine the acceleration of a fluid particle at the location (X,Y,Z)=(1,2,3) (d) Whether the flow is rotational or irrotational flow?arrow_forwardSolve this problem and show all of the workarrow_forward
- Solve this problem and show all of the workarrow_forwarddraw the pneumatic circuit to operate a double-acting cylinder with: 1. Extension: Any of two manual conditions plus cylinder fully retracted, → Extension has both meter-in and meter-out, 2. Retraction: one manual conditions plus cylinder fully extended, → Retraction is very fast using quick exhaust valve.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you. Expert solution plsarrow_forward
- Correct answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only with fbd. I will upvote, thank you.arrow_forward
- Correct answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
