
Discrete Mathematics With Applications
5th Edition
ISBN: 9781337694193
Author: EPP, Susanna S.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.2, Problem 14ES
In 9-33, determine whether the given relation is reflexive symmetric, transitive, or none of these. Justify your answer.
O is the relation defined on Z as follows: For every
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 11 (a) A tank is discharging water through an orifice at a depth of T
meter below the surface of the water whose area is A m². The
following are the values of a for the corresponding values of A:
A 1.257 1.390
x 1.50 1.65
1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650
1.80 1.95 2.10 2.25 2.40 2.55 2.70
2.85
Using the formula
-3.0
(0.018)T =
dx.
calculate T, the time in seconds for the level of the water to drop
from 3.0 m to 1.5 m above the orifice.
(b) The velocity of a train which starts from rest is given by the fol-
lowing table, the time being reckoned in minutes from the start
and the speed in km/hour:
| † (minutes) |2|4 6 8 10 12
14 16 18 20
v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0
Estimate approximately the total distance ran in 20 minutes.
-
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
p-1
2
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
23
32
how come?
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
The set T is the subset of these residues exceeding
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
2
p-1
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
23
The set T is the subset of these residues exceeding
2°
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
how come?
Chapter 8 Solutions
Discrete Mathematics With Applications
Ch. 8.1 - If R is a relation from A to B, xA , and yB , the...Ch. 8.1 - Prob. 2TYCh. 8.1 - Prob. 3TYCh. 8.1 - Prob. 4TYCh. 8.1 - If R is a relation on a set A, the directed graph...Ch. 8.1 - As in Example 8.1.2, the congruence modulo 2...Ch. 8.1 - Prove that for all integers m and n,m-n is even...Ch. 8.1 - The congruence modulo 3 relation, T, is defined...Ch. 8.1 - Define a relation P on Z as follows: For every...Ch. 8.1 - Prob. 5ES
Ch. 8.1 - Let X={a,b,c}. Define a relation J on P(X) as...Ch. 8.1 - Define a relation R on Z as follows: For all...Ch. 8.1 - Prob. 8ESCh. 8.1 - Let A be the set of all strings of 0’s, 1’s, and...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let R be the “less...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let S be the...Ch. 8.1 - Prob. 12ESCh. 8.1 - Prob. 13ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Prob. 16ESCh. 8.1 - Prob. 17ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Exercises 19-20 refer to unions and intersections...Ch. 8.1 - Prob. 20ESCh. 8.1 - Define relation R and S on R as follows:...Ch. 8.1 - Prob. 22ESCh. 8.1 - Prob. 23ESCh. 8.1 - Prob. 24ESCh. 8.2 - For a relation R on a set A to be reflexive means...Ch. 8.2 - For a relation R on a set A to be symmetric means...Ch. 8.2 - For a relation R on a set A to be transitive means...Ch. 8.2 - Prob. 4TYCh. 8.2 - Prob. 5TYCh. 8.2 - Prob. 6TYCh. 8.2 - Prob. 7TYCh. 8.2 - Prob. 8TYCh. 8.2 - Prob. 9TYCh. 8.2 - Prob. 10TYCh. 8.2 - Prob. 1ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - Prob. 3ESCh. 8.2 - Prob. 4ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 15ESCh. 8.2 - Prob. 16ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 18ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 20ESCh. 8.2 - Prob. 21ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 24ESCh. 8.2 - In 9-33, determine whether the given is reflexive...Ch. 8.2 - Prob. 26ESCh. 8.2 - Prob. 27ESCh. 8.2 - Prob. 28ESCh. 8.2 - Prob. 29ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 31ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 34-36, assume that R is a relation on a et A....Ch. 8.2 - Prob. 35ESCh. 8.2 - Prob. 36ESCh. 8.2 - Prob. 37ESCh. 8.2 - Prob. 38ESCh. 8.2 - Prob. 39ESCh. 8.2 - Prob. 40ESCh. 8.2 - Prob. 41ESCh. 8.2 - In 37-42, assume that R and S are relations on a...Ch. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 44ESCh. 8.2 - Prob. 45ESCh. 8.2 - Prob. 46ESCh. 8.2 - Prob. 47ESCh. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 49ESCh. 8.2 - Prob. 50ESCh. 8.2 - Prob. 51ESCh. 8.2 - In 51—53, R, S, and T are relations defined on...Ch. 8.2 - Prob. 53ESCh. 8.2 - Prob. 54ESCh. 8.2 - Prob. 55ESCh. 8.2 - Prob. 56ESCh. 8.3 - For a relation on a set to be an equivalence...Ch. 8.3 - The notation m=n(modd) is...Ch. 8.3 - Prob. 3TYCh. 8.3 - Prob. 4TYCh. 8.3 - Prob. 5TYCh. 8.3 - Prob. 6TYCh. 8.3 - Prob. 1ESCh. 8.3 - Prob. 2ESCh. 8.3 - Prob. 3ESCh. 8.3 - In each of 3—6, the relation R is an equivalence...Ch. 8.3 - Prob. 5ESCh. 8.3 - In each of 3-6, the relation R is an equivalence...Ch. 8.3 - Prob. 7ESCh. 8.3 - Prob. 8ESCh. 8.3 - Prob. 9ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - Prob. 11ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - In each of 7-14, the relation R is an equivalence...Ch. 8.3 - In each of 7—14, the relation R is an equivalence...Ch. 8.3 - Determine which of the following congruence...Ch. 8.3 - Let R be the relation of congruence modulo 3....Ch. 8.3 - Prob. 17ESCh. 8.3 - Prob. 18ESCh. 8.3 - In 19-31, (1) prove that the relation is an...Ch. 8.3 - Prob. 20ESCh. 8.3 - Prob. 21ESCh. 8.3 - Prob. 22ESCh. 8.3 - Prob. 23ESCh. 8.3 - In 19-31. (1) prove that the relation is an...Ch. 8.3 - In 19-31,(1) prove that the relation is an...Ch. 8.3 - Prob. 26ESCh. 8.3 - Prob. 27ESCh. 8.3 - Prob. 28ESCh. 8.3 - Prob. 29ESCh. 8.3 - Prob. 30ESCh. 8.3 - In 19—31, (1) prove that the relation is an...Ch. 8.3 - Prob. 32ESCh. 8.3 - Prob. 33ESCh. 8.3 - Prob. 34ESCh. 8.3 - Prob. 35ESCh. 8.3 - Prob. 36ESCh. 8.3 - Prob. 37ESCh. 8.3 - Prob. 38ESCh. 8.3 - Prob. 39ESCh. 8.3 - Prob. 40ESCh. 8.3 - Prob. 41ESCh. 8.3 - Prob. 42ESCh. 8.3 - Prob. 43ESCh. 8.3 - Let A=Z+Z+ . Define a relation R on A as follows:...Ch. 8.3 - Prob. 45ESCh. 8.3 - Let R be a relation on a set A and suppose R is...Ch. 8.3 - Refer to the quote at the beginning of this...Ch. 8.4 - When letters of the alphabet are encrypted using...Ch. 8.4 - Prob. 2TYCh. 8.4 - Prob. 3TYCh. 8.4 - Prob. 4TYCh. 8.4 - Prob. 5TYCh. 8.4 - Prob. 6TYCh. 8.4 - Prob. 7TYCh. 8.4 - Prob. 8TYCh. 8.4 - Fermat’s little theorem says that if p is any...Ch. 8.4 - Prob. 10TYCh. 8.4 - Prob. 1ESCh. 8.4 - Use the Caesar cipher to encrypt the message AN...Ch. 8.4 - Prob. 3ESCh. 8.4 - Let a=68, b=33, and n=7. Verify that 7|(68-33)....Ch. 8.4 - Prove the transitivity of modular congruence. That...Ch. 8.4 - Prob. 6ESCh. 8.4 - Verify the following statements. 128=2(mod7) and...Ch. 8.4 - Verify the following statements. 45=3 (mod 6) and...Ch. 8.4 - Prob. 9ESCh. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - Prove that for every integer n0,10n=1(mod9) . Use...Ch. 8.4 - Prob. 13ESCh. 8.4 - Prob. 14ESCh. 8.4 - Prob. 15ESCh. 8.4 - In 16-18, use the techniques of Example 8.4.4 and...Ch. 8.4 - Prob. 17ESCh. 8.4 - Prob. 18ESCh. 8.4 - Prob. 19ESCh. 8.4 - Prob. 20ESCh. 8.4 - Prob. 21ESCh. 8.4 - In 19-24, use the RSA cipher from Examples 8.4.9...Ch. 8.4 - Prob. 23ESCh. 8.4 - Prob. 24ESCh. 8.4 - Prob. 25ESCh. 8.4 - Prob. 26ESCh. 8.4 - In 26 and 27, use the extended Euclidean algorithm...Ch. 8.4 - Prob. 28ESCh. 8.4 - Prob. 29ESCh. 8.4 - Prob. 30ESCh. 8.4 - Find an inverse for 210 modulo 13. Find appositive...Ch. 8.4 - Find an inverse for 41 modulo 660. Find the least...Ch. 8.4 - Prob. 33ESCh. 8.4 - Prob. 34ESCh. 8.4 - Prob. 35ESCh. 8.4 - In 36,37,39 and 40, use the RSA cipher with public...Ch. 8.4 - Prob. 37ESCh. 8.4 - Find the least positive inverse for 43 modulo 660.Ch. 8.4 - Prob. 39ESCh. 8.4 - Prob. 40ESCh. 8.4 - Prob. 41ESCh. 8.4 - Prob. 42ESCh. 8.4 - Prob. 43ESCh. 8.5 - Prob. 1TYCh. 8.5 - Prob. 2TYCh. 8.5 - Prob. 3TYCh. 8.5 - Prob. 4TYCh. 8.5 - Prob. 5TYCh. 8.5 - Prob. 6TYCh. 8.5 - Prob. 7TYCh. 8.5 - Prob. 8TYCh. 8.5 - Prob. 9TYCh. 8.5 - Prob. 10TYCh. 8.5 - Each of the following is a relation on {0,1,2,3}...Ch. 8.5 - Prob. 2ESCh. 8.5 - Let S be the set of all strings of a’s and b’s....Ch. 8.5 - Prob. 4ESCh. 8.5 - Prob. 5ESCh. 8.5 - Let P be the set of all people who have ever lived...Ch. 8.5 - Prob. 7ESCh. 8.5 - Prob. 8ESCh. 8.5 - Prob. 9ESCh. 8.5 - Suppose R and S are antisymmetric relations on a...Ch. 8.5 - Let A={a,b}, and supposeAhas the partial order...Ch. 8.5 - Prob. 12ESCh. 8.5 - Let A={a,b} . Describe all partial order relations...Ch. 8.5 - Let A={a,b,c}. Describe all partial order...Ch. 8.5 - Prob. 15ESCh. 8.5 - Consider the “divides” relation on each of the...Ch. 8.5 - Prob. 17ESCh. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Consider the “divides” relation defined on the set...Ch. 8.5 - Prob. 22ESCh. 8.5 - Prob. 23ESCh. 8.5 - Prob. 24ESCh. 8.5 - Prob. 25ESCh. 8.5 - Prob. 26ESCh. 8.5 - Prob. 27ESCh. 8.5 - Prob. 28ESCh. 8.5 - Prob. 29ESCh. 8.5 - Prob. 30ESCh. 8.5 - Prob. 31ESCh. 8.5 - Prob. 32ESCh. 8.5 - Consider the set A={12,24,48,3,9} ordered by the...Ch. 8.5 - Suppose that R is a partial order relation on a...Ch. 8.5 - Prob. 35ESCh. 8.5 - The set A={2,4,3,6,12,18,24} is partially ordered...Ch. 8.5 - Find a chain of length 2 for the relation defined...Ch. 8.5 - Prob. 38ESCh. 8.5 - Prob. 39ESCh. 8.5 - Prob. 40ESCh. 8.5 - Prob. 41ESCh. 8.5 - Prob. 42ESCh. 8.5 - Prob. 43ESCh. 8.5 - Prob. 44ESCh. 8.5 - Prob. 45ESCh. 8.5 - Prob. 46ESCh. 8.5 - Prob. 47ESCh. 8.5 - Prob. 48ESCh. 8.5 - Prob. 49ESCh. 8.5 - A set S of jobs can be ordered by writing x_y to...Ch. 8.5 - Suppose the tasks described in Example 8.5.12...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forward3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain Dew flavors are next to each other? 3.2.1arrow_forwardBusinessarrow_forward
- Please explain how come of X2(n).arrow_forwardNo chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forward
- https://www.hawkeslearning.com/Statistics/dbs2/datasets.htmlarrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY