
Discrete Mathematics With Applications
5th Edition
ISBN: 9781337694193
Author: EPP, Susanna S.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.5, Problem 27ES
To determine
To find the greatest, least, maximal and minimal elements for the relations in the given exercise.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5.
156
m/WXY = 59°
63
E
7.
B
E
101 C
mFE =
6.
68°
8.
C
17
Scoring: MATH
15 FILING
/10 COMPARISON
/10 RULER I
13
Express
EMPLOYMENT PROFESSIONALS
NAME:
SKILLS EVALUATION TEST- Light Industrial
MATH-Solve the following problems. (Feel free to use a calculator.)
DATE:
1. If you were asked to load 225 boxes onto a truck, and the boxes are crated,
with each crate containing nine boxes, how many crates would you need to load?
2. Imagine you live only one mile from work and you decide to walk. If you
walk four miles per hour, how long will it take you to walk one mile?
3. Add 3 feet 6 inches + 8 feet 2 inches + 4 inches + 2 feet 5 inches.
4. In a grocery store, steak costs $3.85 per pound. If you buy a three-pound
steak and pay for it with a $20 bill, how much change will you get?
5. Add 8 minutes 32 seconds + 37 minutes 18 seconds + 15 seconds.
FILING - In the space provided, write the number of the file cabinet where the company should be filed.
Example: File Cabinet #4 Elson Co.
File Cabinets:
1. Aa-Bb
3. Cg-Dz
5. Ga-Hz
7. La-Md
9. Na-Oz
2. Bc-Cf…
part 3 of the question is:
A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes.
What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model.
Will the last passenger to board the ride need to wait in order to exit the ride? Explain.
Chapter 8 Solutions
Discrete Mathematics With Applications
Ch. 8.1 - If R is a relation from A to B, xA , and yB , the...Ch. 8.1 - Prob. 2TYCh. 8.1 - Prob. 3TYCh. 8.1 - Prob. 4TYCh. 8.1 - If R is a relation on a set A, the directed graph...Ch. 8.1 - As in Example 8.1.2, the congruence modulo 2...Ch. 8.1 - Prove that for all integers m and n,m-n is even...Ch. 8.1 - The congruence modulo 3 relation, T, is defined...Ch. 8.1 - Define a relation P on Z as follows: For every...Ch. 8.1 - Prob. 5ES
Ch. 8.1 - Let X={a,b,c}. Define a relation J on P(X) as...Ch. 8.1 - Define a relation R on Z as follows: For all...Ch. 8.1 - Prob. 8ESCh. 8.1 - Let A be the set of all strings of 0’s, 1’s, and...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let R be the “less...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let S be the...Ch. 8.1 - Prob. 12ESCh. 8.1 - Prob. 13ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Prob. 16ESCh. 8.1 - Prob. 17ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Exercises 19-20 refer to unions and intersections...Ch. 8.1 - Prob. 20ESCh. 8.1 - Define relation R and S on R as follows:...Ch. 8.1 - Prob. 22ESCh. 8.1 - Prob. 23ESCh. 8.1 - Prob. 24ESCh. 8.2 - For a relation R on a set A to be reflexive means...Ch. 8.2 - For a relation R on a set A to be symmetric means...Ch. 8.2 - For a relation R on a set A to be transitive means...Ch. 8.2 - Prob. 4TYCh. 8.2 - Prob. 5TYCh. 8.2 - Prob. 6TYCh. 8.2 - Prob. 7TYCh. 8.2 - Prob. 8TYCh. 8.2 - Prob. 9TYCh. 8.2 - Prob. 10TYCh. 8.2 - Prob. 1ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - Prob. 3ESCh. 8.2 - Prob. 4ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 15ESCh. 8.2 - Prob. 16ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 18ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 20ESCh. 8.2 - Prob. 21ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 24ESCh. 8.2 - In 9-33, determine whether the given is reflexive...Ch. 8.2 - Prob. 26ESCh. 8.2 - Prob. 27ESCh. 8.2 - Prob. 28ESCh. 8.2 - Prob. 29ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 31ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 34-36, assume that R is a relation on a et A....Ch. 8.2 - Prob. 35ESCh. 8.2 - Prob. 36ESCh. 8.2 - Prob. 37ESCh. 8.2 - Prob. 38ESCh. 8.2 - Prob. 39ESCh. 8.2 - Prob. 40ESCh. 8.2 - Prob. 41ESCh. 8.2 - In 37-42, assume that R and S are relations on a...Ch. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 44ESCh. 8.2 - Prob. 45ESCh. 8.2 - Prob. 46ESCh. 8.2 - Prob. 47ESCh. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 49ESCh. 8.2 - Prob. 50ESCh. 8.2 - Prob. 51ESCh. 8.2 - In 51—53, R, S, and T are relations defined on...Ch. 8.2 - Prob. 53ESCh. 8.2 - Prob. 54ESCh. 8.2 - Prob. 55ESCh. 8.2 - Prob. 56ESCh. 8.3 - For a relation on a set to be an equivalence...Ch. 8.3 - The notation m=n(modd) is...Ch. 8.3 - Prob. 3TYCh. 8.3 - Prob. 4TYCh. 8.3 - Prob. 5TYCh. 8.3 - Prob. 6TYCh. 8.3 - Prob. 1ESCh. 8.3 - Prob. 2ESCh. 8.3 - Prob. 3ESCh. 8.3 - In each of 3—6, the relation R is an equivalence...Ch. 8.3 - Prob. 5ESCh. 8.3 - In each of 3-6, the relation R is an equivalence...Ch. 8.3 - Prob. 7ESCh. 8.3 - Prob. 8ESCh. 8.3 - Prob. 9ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - Prob. 11ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - In each of 7-14, the relation R is an equivalence...Ch. 8.3 - In each of 7—14, the relation R is an equivalence...Ch. 8.3 - Determine which of the following congruence...Ch. 8.3 - Let R be the relation of congruence modulo 3....Ch. 8.3 - Prob. 17ESCh. 8.3 - Prob. 18ESCh. 8.3 - In 19-31, (1) prove that the relation is an...Ch. 8.3 - Prob. 20ESCh. 8.3 - Prob. 21ESCh. 8.3 - Prob. 22ESCh. 8.3 - Prob. 23ESCh. 8.3 - In 19-31. (1) prove that the relation is an...Ch. 8.3 - In 19-31,(1) prove that the relation is an...Ch. 8.3 - Prob. 26ESCh. 8.3 - Prob. 27ESCh. 8.3 - Prob. 28ESCh. 8.3 - Prob. 29ESCh. 8.3 - Prob. 30ESCh. 8.3 - In 19—31, (1) prove that the relation is an...Ch. 8.3 - Prob. 32ESCh. 8.3 - Prob. 33ESCh. 8.3 - Prob. 34ESCh. 8.3 - Prob. 35ESCh. 8.3 - Prob. 36ESCh. 8.3 - Prob. 37ESCh. 8.3 - Prob. 38ESCh. 8.3 - Prob. 39ESCh. 8.3 - Prob. 40ESCh. 8.3 - Prob. 41ESCh. 8.3 - Prob. 42ESCh. 8.3 - Prob. 43ESCh. 8.3 - Let A=Z+Z+ . Define a relation R on A as follows:...Ch. 8.3 - Prob. 45ESCh. 8.3 - Let R be a relation on a set A and suppose R is...Ch. 8.3 - Refer to the quote at the beginning of this...Ch. 8.4 - When letters of the alphabet are encrypted using...Ch. 8.4 - Prob. 2TYCh. 8.4 - Prob. 3TYCh. 8.4 - Prob. 4TYCh. 8.4 - Prob. 5TYCh. 8.4 - Prob. 6TYCh. 8.4 - Prob. 7TYCh. 8.4 - Prob. 8TYCh. 8.4 - Fermat’s little theorem says that if p is any...Ch. 8.4 - Prob. 10TYCh. 8.4 - Prob. 1ESCh. 8.4 - Use the Caesar cipher to encrypt the message AN...Ch. 8.4 - Prob. 3ESCh. 8.4 - Let a=68, b=33, and n=7. Verify that 7|(68-33)....Ch. 8.4 - Prove the transitivity of modular congruence. That...Ch. 8.4 - Prob. 6ESCh. 8.4 - Verify the following statements. 128=2(mod7) and...Ch. 8.4 - Verify the following statements. 45=3 (mod 6) and...Ch. 8.4 - Prob. 9ESCh. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - Prove that for every integer n0,10n=1(mod9) . Use...Ch. 8.4 - Prob. 13ESCh. 8.4 - Prob. 14ESCh. 8.4 - Prob. 15ESCh. 8.4 - In 16-18, use the techniques of Example 8.4.4 and...Ch. 8.4 - Prob. 17ESCh. 8.4 - Prob. 18ESCh. 8.4 - Prob. 19ESCh. 8.4 - Prob. 20ESCh. 8.4 - Prob. 21ESCh. 8.4 - In 19-24, use the RSA cipher from Examples 8.4.9...Ch. 8.4 - Prob. 23ESCh. 8.4 - Prob. 24ESCh. 8.4 - Prob. 25ESCh. 8.4 - Prob. 26ESCh. 8.4 - In 26 and 27, use the extended Euclidean algorithm...Ch. 8.4 - Prob. 28ESCh. 8.4 - Prob. 29ESCh. 8.4 - Prob. 30ESCh. 8.4 - Find an inverse for 210 modulo 13. Find appositive...Ch. 8.4 - Find an inverse for 41 modulo 660. Find the least...Ch. 8.4 - Prob. 33ESCh. 8.4 - Prob. 34ESCh. 8.4 - Prob. 35ESCh. 8.4 - In 36,37,39 and 40, use the RSA cipher with public...Ch. 8.4 - Prob. 37ESCh. 8.4 - Find the least positive inverse for 43 modulo 660.Ch. 8.4 - Prob. 39ESCh. 8.4 - Prob. 40ESCh. 8.4 - Prob. 41ESCh. 8.4 - Prob. 42ESCh. 8.4 - Prob. 43ESCh. 8.5 - Prob. 1TYCh. 8.5 - Prob. 2TYCh. 8.5 - Prob. 3TYCh. 8.5 - Prob. 4TYCh. 8.5 - Prob. 5TYCh. 8.5 - Prob. 6TYCh. 8.5 - Prob. 7TYCh. 8.5 - Prob. 8TYCh. 8.5 - Prob. 9TYCh. 8.5 - Prob. 10TYCh. 8.5 - Each of the following is a relation on {0,1,2,3}...Ch. 8.5 - Prob. 2ESCh. 8.5 - Let S be the set of all strings of a’s and b’s....Ch. 8.5 - Prob. 4ESCh. 8.5 - Prob. 5ESCh. 8.5 - Let P be the set of all people who have ever lived...Ch. 8.5 - Prob. 7ESCh. 8.5 - Prob. 8ESCh. 8.5 - Prob. 9ESCh. 8.5 - Suppose R and S are antisymmetric relations on a...Ch. 8.5 - Let A={a,b}, and supposeAhas the partial order...Ch. 8.5 - Prob. 12ESCh. 8.5 - Let A={a,b} . Describe all partial order relations...Ch. 8.5 - Let A={a,b,c}. Describe all partial order...Ch. 8.5 - Prob. 15ESCh. 8.5 - Consider the “divides” relation on each of the...Ch. 8.5 - Prob. 17ESCh. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Consider the “divides” relation defined on the set...Ch. 8.5 - Prob. 22ESCh. 8.5 - Prob. 23ESCh. 8.5 - Prob. 24ESCh. 8.5 - Prob. 25ESCh. 8.5 - Prob. 26ESCh. 8.5 - Prob. 27ESCh. 8.5 - Prob. 28ESCh. 8.5 - Prob. 29ESCh. 8.5 - Prob. 30ESCh. 8.5 - Prob. 31ESCh. 8.5 - Prob. 32ESCh. 8.5 - Consider the set A={12,24,48,3,9} ordered by the...Ch. 8.5 - Suppose that R is a partial order relation on a...Ch. 8.5 - Prob. 35ESCh. 8.5 - The set A={2,4,3,6,12,18,24} is partially ordered...Ch. 8.5 - Find a chain of length 2 for the relation defined...Ch. 8.5 - Prob. 38ESCh. 8.5 - Prob. 39ESCh. 8.5 - Prob. 40ESCh. 8.5 - Prob. 41ESCh. 8.5 - Prob. 42ESCh. 8.5 - Prob. 43ESCh. 8.5 - Prob. 44ESCh. 8.5 - Prob. 45ESCh. 8.5 - Prob. 46ESCh. 8.5 - Prob. 47ESCh. 8.5 - Prob. 48ESCh. 8.5 - Prob. 49ESCh. 8.5 - A set S of jobs can be ordered by writing x_y to...Ch. 8.5 - Suppose the tasks described in Example 8.5.12...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- If you were asked to load 225 boxes onto a truck, and the boxes are crated, with each crate containing nine boxes, how many crates would you need to load?arrow_forwardForce with 800 N and 400 N are acting on a machine part at 30° and 60°, respectively with the positive x axisarrow_forward2. The duration of the ride is 15 min. (a) How many times does the last passenger who boarded the ride make a complete loop on the Ferris wheel? (b) What is the position of that passenger when the ride ends?arrow_forward
- Find the accumulated amount A, if the principal P is invested at an interest rate of r per year for t years. (Round your answer to the nearest cent.) P = $13,000, r = 6%, t = 10, compounded quarterly A = $ 31902 Need Help? Read It Watch It Viewing Saved Work Revert to Last Response SUBMIT ANSWER O/6.66 Points] DETAILS MY NOTES TANAPCALC10 5.3.003. EVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER Find the accumulated amount A, if the principal P is invested at an interest rate of r per year for t years. (Round your answer to the nearest cent.) P = $140,000, r = 8%, t = 8, compounded monthly A = $259130.20 X Need Help? Read It Watch Itarrow_forwardFind the present value of $20,000 due in 3 years at the given rate of interest. (Round your answers to the nearest cent.) (a) 2%/year compounded monthly (b) 5%/year compounded daily $ Need Help? Read It Watch It SUBMIT ANSWER [-/6.66 Points] DETAILS MY NOTES TANAPCALC10 5.3.009. ASK YOUR TEACHER PRACTICE ANC Find the accumulated amount after 3 years if $4000 is invested at 3%/year compounded continuously. (Round your answer to the nearest cent.) Need Help? Read It Watch Itarrow_forwardFind the effective rate corresponding to the given nominal rate. (Round your answers to three decimal places.) (a) 9.5%/year compounded monthly % (b) 9.5%/year compounded daily % Need Help? Read It Watch It SUBMIT ANSWER -/6.66 Points] DETAILS MY NOTES TANAPCALC10 5.3.007. ASK YOUR TEACHE Find the present value of $90,000 due in 7 years at the given rate of interest. (Round your answers to the nearest cent.) (a) 9%/year compounded semiannually (b) 9%/year compounded quarterly LAarrow_forward
- Find the accumulated amount A, if the principal P is invested at an interest rate of r per year for t years. (Round your answer to the nearest cent.) P = $160,000, r = 7%, t = 4, compounded daily A = $211113.60 Need Help? Read It SUBMIT ANSWER ASK YOUR TEACHER PRACTICE ANOTHER --/6.66 Points] DETAILS MY NOTES TANAPCALC10 5.3.005. Find the effective rate corresponding to the given nominal rate. (Round your answers to three decimal places.) (a) 8%/year compounded semiannually % (b) 9%/year compounded quarterly %arrow_forward3. A scientist recorded the movement of a pendulum for 10 s. The scientist began recording when the pendulum was at its resting position. The pendulum then moved right (positive displacement) and left (negative displacement) several times. The pendulum took 4 s to swing to the right and the left and then return to its resting position. The pendulum's furthest distance to either side was 6 in. Graph the function that represents the pendulum's displacement as a function of time. Answer: f(t) (a) Write an equation to represent the displacement of the pendulum as a function of time. (b) Graph the function. 10 9 8 7 6 5 4 3 2 1 0 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -1 -5. -6 -7 -8 -9 -10-arrow_forwardFind the derivative of the function. g'(t) = 9t g(t) = In(t) (9ln(t) - 1) [In(t)] 2 × Need Help? Read It Watch Itarrow_forward
- A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. (a) What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. (b) Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardFind the accumulated amount A, if the principal P is invested at an interest rate of r per year for t years. (Round your answer to the nearest cent.) P = $3800, r = 4%, t = 10, compounded semiannually A = $ 5645.60 × Need Help? Read It SUBMIT ANSWER [3.33/6.66 Points] DETAILS MY NOTES REVIOUS ANSWERS ASK YOUR TEACHER TANAPCALC10 5.3.001.EP. PRACTICE ANOTHER Consider the following where the principal P is invested at an interest rate of r per year for t years. P = $3,100, r = 4%, t = 10, compounded semiannually Determine m, the number of conversion periods per year. 2 Find the accumulated amount A (in dollars). (Round your answer to the nearest cent.) A = $ 4604.44arrow_forwardThe Colossus Ferris wheel debuted at the 1984 New Orleans World's Fair. The ride is 180 ft tall, and passengers board the ride at an initial height of 15 ft above the ground. The height above ground, h, of a passenger on the ride is a periodic function of time, t. The graph displays the height above ground of the last passenger to board over the course of the 15 min ride. Height of Passenger in Ferris Wheel 180 160 140- €120 Height, h (ft) 100 80 60 40 20 0 ך 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time of operation, t (min) Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the period of the sine function model? Interpret the period you found in the context of the operation of the Ferris wheel. Answer:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY