To find:the quadratic function using the given information
Answer to Problem 89E
The quadratic function using the given information is
Explanation of Solution
Given information:
Concept Involved:
Solution of a system of equation is the point which makes both the equation TRUE.
Graphically the solution to the system of equation is the point where the two lines meet.
A matrix derived from a system of linear equations (each written in standard form with the constant term on the right) is the augmented matrix of the system.
Elementary Row Operation:
The three operations that can be used on a system of linear equations to produce an equivalent system.
Operation | Notation |
1.Interchange two equations | |
2. Multiply an equation by a nonzero constant | |
3. Add a multiple of an equation to another equation. |
In matrix terminology, these three operations correspond to elementary row operations.
An elementary row operation on an augmented matrix of a given system of linear equations produces a new augmented matrix corresponding to a new (but equivalent) system of linear equations.
Two matrices are row-equivalent when one can be obtained from the other by a sequence of elementary row operations.
Row-Echelon Form and Reduced Row-Echelon Form:
A matrix in row-echelon form has the following properties.
1. Any rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entryis 1 (called a leading 1).
3. For two successive (nonzero) rows, the leading 1 in the higher row is fartherto the left than the leading 1 in the lower row.
A matrix in row-echelon form is in reduced row-echelon form when every columnthat has a leading 1 has zeros in every position above and below its leading 1.
Calculation:
Use the information
Simplify and label the equation
Use the information
Simplify and label the equation
Use the information
Simplify and label the equation
Write the system of equation
Multiply the 1st row by ¼
Add -1 times the 1st row to the 2nd row
Add -1 times the 1st row to the 3rd row
Multiply the 2nd row by -2
Add -3/2 times the 2nd row to the 3rd row
Multiply the 3rd row by 1/3
Add 3/2 times the 3rd row to the 2nd row
Add -1/4 times the 3rd row to the 1st row
Add 1/2 times the 2nd row to the 1st row
The matrix is now in reduced row-echelon form. Converting back to a system of linear
equations, you have
Conclusion:
Substituting the values of a, b and c in the quadratic function is
Chapter 8 Solutions
EBK PRECALCULUS W/LIMITS
- Find the equation of the line / in the figure below. Give exact values using the form y = mx + b. m = b = y WebAssign Plot f(x) = 10* log 9 Xarrow_forwardA particle travels along a straight line path given by s=9.5t3-2.2t2-4.5t+9.9 (in meters). What time does it change direction? Report the higher of the answers to the nearest 2 decimal places in seconds.arrow_forwardUse the method of disks to find the volume of the solid that is obtained when the region under the curve y = over the interval [4,17] is rotated about the x-axis.arrow_forward
- 1. Find the area of the region enclosed between the curves y = x and y = x. Sketch the region.arrow_forwardfor the given rectangular coordinates, find two sets of polar coordinates for which 0≤θ<2π, one with r>0 and the other with r<0. (-2sqrt(3),9)arrow_forwardI circled the correct answer, could you show me how to do it using divergence and polar coordinatesarrow_forward
- The correct answer is D Could you explain and show the steps pleasearrow_forwardTaylor Series Approximation Example- H.W More terms used implies better approximation f(x) 4 f(x) Zero order f(x + 1) = f(x;) First order f(x; + 1) = f(x;) + f'(x;)h 1.0 Second order 0.5 True f(x + 1) = f(x) + f'(x)h + ƒ"(x;) h2 2! f(x+1) 0 x; = 0 x+1 = 1 x h f(x)=0.1x4-0.15x³- 0.5x2 -0.25x + 1.2 51 Taylor Series Approximation H.w: Smaller step size implies smaller error Errors f(x) + f(x,) Zero order f(x,+ 1) = f(x) First order 1.0 0.5 Reduced step size Second order True f(x + 1) = f(x) + f'(x)h f(x; + 1) = f(x) + f'(x)h + "(xi) h2 f(x,+1) O x₁ = 0 x+1=1 Using Taylor Series Expansion estimate f(1.35) with x0 =0.75 with 5 iterations (or & s= 5%) for f(x)=0.1x 0.15x³-0.5x²- 0.25x + 1.2 52arrow_forwardCould you explain this using the formula I attached and polar coorindatesarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning