To find:the solution to the given system of linear equations

Answer to Problem 74E
The solutions to the given system of equation are
Explanation of Solution
Given information:The system of equation is
Concept Involved:
Solution of a system of equation is the point which makes both the equation TRUE.
Graphically the solution to the system of equation is the point where the two lines meet.
A matrix derived from a system of linear equations (each written in standard formwith the constant term on the right) is the augmented matrix of the system.
Elementary Row Operation:
The three operations that can be used on a system of linearequations to produce an equivalent system.
Operation | Notation |
1.Interchange two equations | |
2. Multiply an equation by a nonzero constant | |
3. Add a multiple of an equation to another equation. |
In matrix terminology, these three operations correspond to elementary rowoperations.
An elementary row operation on an augmented matrix of a given systemof linear equations produces a new augmented matrix corresponding to a new (butequivalent) system of linear equations.
Two matrices are row-equivalent when one canbe obtained from the other by a sequence of elementary row operations.
Row-Echelon Form and Reduced Row-Echelon Form:
A matrix in row-echelon form has the following properties.
1. Any rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entryis 1 (called a leading 1).
3. For two successive (nonzero) rows, the leading 1 in the higher row is fartherto the left than the leading 1 in the lower row.
A matrix in row-echelon form is in reduced row-echelon form when every columnthat has a leading 1 has zeros in every position above and below its leading 1.
Calculation:
Write the system of equation
Multiply -2 with the first Row and add it with the second Row
Multiply -1 to the second Row
Multiply -1 to the second Row and add it with the first Row
The corresponding system of equation is
Solving for x and y in terms of z, you have
To write a solution of the system that does not use any of the three variables of the
system, let
for xand y.
Conclusion:
So, the solution set can be written as an ordered triple of the form
Chapter 8 Solutions
EBK PRECALCULUS W/LIMITS
- For the system consisting of the lines: and 71 = (-8,5,6) + t(4, −5,3) 72 = (0, −24,9) + u(−1, 6, −3) a) State whether the two lines are parallel or not and justify your answer. b) Find the point of intersection, if possible, and classify the system based on the number of points of intersection and how the lines are related. Show a complete solution process.arrow_forward3. [-/2 Points] DETAILS MY NOTES SESSCALCET2 7.4.013. Find the exact length of the curve. y = In(sec x), 0 ≤ x ≤ π/4arrow_forwardH.w WI M Wz A Sindax Sind dy max Утах at 0.75m from A w=6KN/M L=2 W2=9 KN/m P= 10 KN B Make the solution handwritten and not artificial intelligence because I will give a bad rating if you solve it with artificial intelligencearrow_forward
- Solve by DrWz WI P L B dy Sind Ⓡ de max ⑦Ymax dx Solve by Dr ③Yat 0.75m from A w=6KN/M L=2 W2=9 kN/m P= 10 KN Solve By Drarrow_forwardHow to find the radius of convergence for the series in the image below? I'm stuck on how to isolate the x in the interval of convergence.arrow_forwardDetermine the exact signed area between the curve g(x): x-axis on the interval [0,1]. = tan2/5 secx dx andarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





