ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
7th Edition
ISBN: 9781319399849
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8A.10E
(a)
Interpretation Introduction
Interpretation:
The species with the greatest polarizability has to be given.
(b)
Interpretation Introduction
Interpretation:
The species with the greatest polarizability has to be explained.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The elements sodium, aluminum, and chlorine are in the same period.
(a) Which has the greatest electronegativity?
(b) Which of the atoms is smallest?
(c) Which is the largest possible oxidation state for each of these elements?
(d) Will the oxide of each element in the highest oxidation state (write its formula)
be acidic, basic, or amphoteric?
The elements sodium, aluminum, and chlorine are in the same period.(a) Which has the greatest electronegativity?(b) Which of the atoms is smallest?(c) Write the Lewis structure for the simplest covalent compound that can form between aluminum and chlorine.(d) Will the oxide of each element be acidic, basic, or amphoteric?
(a) Which poisonous gas is evolved when white phosphorus is heated with Cone. NaOH solution? Write the chemical equation.
(b) Write the formula of first noble gas compound prepared by N. Bartlett. What inspired N. Bartlett to prepare this compound?
(c) Fluorine is a stronger oxidising agent than chlorine. Why?
(d)Write one use of chlorine gas.
Chapter 8 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
Ch. 8 - Prob. 8A.1ASTCh. 8 - Prob. 8A.1BSTCh. 8 - Prob. 8A.2ASTCh. 8 - Prob. 8A.2BSTCh. 8 - Prob. 8A.1ECh. 8 - Prob. 8A.2ECh. 8 - Prob. 8A.3ECh. 8 - Prob. 8A.4ECh. 8 - Prob. 8A.5ECh. 8 - Prob. 8A.6E
Ch. 8 - Prob. 8A.7ECh. 8 - Prob. 8A.8ECh. 8 - Prob. 8A.9ECh. 8 - Prob. 8A.10ECh. 8 - Prob. 8A.11ECh. 8 - Prob. 8A.12ECh. 8 - Prob. 8A.13ECh. 8 - Prob. 8A.14ECh. 8 - Prob. 8A.15ECh. 8 - Prob. 8A.16ECh. 8 - Prob. 8A.17ECh. 8 - Prob. 8A.18ECh. 8 - Prob. 8A.19ECh. 8 - Prob. 8A.20ECh. 8 - Prob. 8B.1ASTCh. 8 - Prob. 8B.1BSTCh. 8 - Prob. 8B.2ASTCh. 8 - Prob. 8B.2BSTCh. 8 - Prob. 8B.1ECh. 8 - Prob. 8B.2ECh. 8 - Prob. 8B.3ECh. 8 - Prob. 8B.4ECh. 8 - Prob. 8B.5ECh. 8 - Prob. 8B.6ECh. 8 - Prob. 8B.7ECh. 8 - Prob. 8B.8ECh. 8 - Prob. 8C.1ASTCh. 8 - Prob. 8C.1BSTCh. 8 - Prob. 8C.2BSTCh. 8 - Prob. 8C.1ECh. 8 - Prob. 8C.2ECh. 8 - Prob. 8C.3ECh. 8 - Prob. 8C.4ECh. 8 - Prob. 8C.5ECh. 8 - Prob. 8C.6ECh. 8 - Prob. 8D.1ASTCh. 8 - Prob. 8D.1BSTCh. 8 - Prob. 8D.2ASTCh. 8 - Prob. 8D.2BSTCh. 8 - Prob. 8D.1ECh. 8 - Prob. 8D.2ECh. 8 - Prob. 8D.3ECh. 8 - Prob. 8D.4ECh. 8 - Prob. 8D.5ECh. 8 - Prob. 8D.6ECh. 8 - Prob. 8D.7ECh. 8 - Prob. 8D.8ECh. 8 - Prob. 8E.1ASTCh. 8 - Prob. 8E.1BSTCh. 8 - Prob. 8E.2ASTCh. 8 - Prob. 8E.2BSTCh. 8 - Prob. 8E.1ECh. 8 - Prob. 8E.2ECh. 8 - Prob. 8E.3ECh. 8 - Prob. 8E.4ECh. 8 - Prob. 8E.5ECh. 8 - Prob. 8E.6ECh. 8 - Prob. 8E.7ECh. 8 - Prob. 8E.8ECh. 8 - Prob. 8F.1ASTCh. 8 - Prob. 8F.1BSTCh. 8 - Prob. 8F.2ASTCh. 8 - Prob. 8F.2BSTCh. 8 - Prob. 8F.1ECh. 8 - Prob. 8F.2ECh. 8 - Prob. 8F.3ECh. 8 - Prob. 8F.4ECh. 8 - Prob. 8F.5ECh. 8 - Prob. 8F.6ECh. 8 - Prob. 8G.1ASTCh. 8 - Prob. 8G.1BSTCh. 8 - Prob. 8G.2ASTCh. 8 - Prob. 8G.2BSTCh. 8 - Prob. 8G.1ECh. 8 - Prob. 8G.2ECh. 8 - Prob. 8G.3ECh. 8 - Prob. 8G.4ECh. 8 - Prob. 8G.5ECh. 8 - Prob. 8G.6ECh. 8 - Prob. 8G.7ECh. 8 - Prob. 8G.8ECh. 8 - Prob. 8G.9ECh. 8 - Prob. 8G.10ECh. 8 - Prob. 8H.1ASTCh. 8 - Prob. 8H.1BSTCh. 8 - Prob. 8H.2ASTCh. 8 - Prob. 8H.2BSTCh. 8 - Prob. 8H.1ECh. 8 - Prob. 8H.2ECh. 8 - Prob. 8H.3ECh. 8 - Prob. 8H.4ECh. 8 - Prob. 8H.5ECh. 8 - Prob. 8H.6ECh. 8 - Prob. 8H.7ECh. 8 - Prob. 8H.8ECh. 8 - Prob. 8H.10ECh. 8 - Prob. 8H.11ECh. 8 - Prob. 8H.12ECh. 8 - Prob. 8I.1ASTCh. 8 - Prob. 8I.1BSTCh. 8 - Prob. 8I.2ASTCh. 8 - Prob. 8I.2BSTCh. 8 - Prob. 8I.1ECh. 8 - Prob. 8I.2ECh. 8 - Prob. 8I.3ECh. 8 - Prob. 8I.5ECh. 8 - Prob. 8I.6ECh. 8 - Prob. 8I.7ECh. 8 - Prob. 8I.8ECh. 8 - Prob. 8I.9ECh. 8 - Prob. 8I.10ECh. 8 - Prob. 8I.11ECh. 8 - Prob. 8I.12ECh. 8 - Prob. 8I.13ECh. 8 - Prob. 8I.14ECh. 8 - Prob. 8I.15ECh. 8 - Prob. 8I.16ECh. 8 - Prob. 8J.1ASTCh. 8 - Prob. 8J.1BSTCh. 8 - Prob. 8J.1ECh. 8 - Prob. 8J.2ECh. 8 - Prob. 8J.3ECh. 8 - Prob. 8J.4ECh. 8 - Prob. 8J.5ECh. 8 - Prob. 8J.6ECh. 8 - Prob. 8J.7ECh. 8 - Prob. 8J.8ECh. 8 - Prob. 8.3ECh. 8 - Prob. 8.4ECh. 8 - Prob. 8.5ECh. 8 - Prob. 8.6ECh. 8 - Prob. 8.7ECh. 8 - Prob. 8.8ECh. 8 - Prob. 8.9ECh. 8 - Prob. 8.11ECh. 8 - Prob. 8.12ECh. 8 - Prob. 8.13ECh. 8 - Prob. 8.14ECh. 8 - Prob. 8.15ECh. 8 - Prob. 8.17ECh. 8 - Prob. 8.18ECh. 8 - Prob. 8.19ECh. 8 - Prob. 8.20ECh. 8 - Prob. 8.21ECh. 8 - Prob. 8.22ECh. 8 - Prob. 8.25ECh. 8 - Prob. 8.29ECh. 8 - Prob. 8.31CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An electrode has a negative electrode potential. Which statement is correct regarding the potential energy of an electron at this electrode?(a) An electron at this electrode has a lower potential energy than it has at a standard hydrogen electrode.(b) An electron at this electrode has a higher potential energy than it has at a standard hydrogen electrode.(c) An electron at this electrode has the same potential energy as it has at astandard hydrogen electrode.arrow_forwardEach of the chemically active Period 2 elements forms stable compounds in which it has bonds to fluorine. (a) What are the names and formulas of these compounds? (b) Does ∆EN increase or decrease left to right across the period? (c) Does percent ionic character increase or decrease left to right? (d) Draw Lewis structures for these compoundsarrow_forwardCompounds such as NaBH4, Al(BH4)3, and LiAlH4 are complex hydrides used as reducing agents in many syntheses. (a) Give the oxidation state of each element in these compounds. (b) Write a Lewis structure for the polyatomic anion in NaBH4, and predict its shape.arrow_forward
- Compounds such as NaBH4, Al(BH4)3, and LiAlH4 are complexhydrides used as reducing agents in many syntheses.(a) Give the oxidation state of each element in these compounds.(b) Write a Lewis structure for the polyatomic anion in NaBH4, and predict its shape.arrow_forwardWrite a Lewis structure for each of the following molecules and ions:(a) (CH3)3SiH(b) SiO44−(c) Si2H6(d) Si(OH)4(e) SiF62−arrow_forwardAmmonium chloride, NH4Cl, is a very soluble salt in water.(a) Draw the Lewis structures of the ammonium and chlorideions. (b) Is there an N—Cl bond in solid ammonium chloride?(c) If you dissolve 14 g of ammonium chloride in 500.0 mLof water, what is the molar concentration of the solution?(d) How many grams of silver nitrate do you need to add tothe solution in part (c) to precipitate all of the chloride as silverchloride?arrow_forward
- Compounds such as NaBH₄, Al(BH₄)₃, and LiAlH₄ arecomplex hydrides used as reducing agents in many syntheses.(a) Give the oxidation state of each element in these compounds.(b) Write a Lewis structure for the polyatomic anion in NaBH₄,and predict its shape.arrow_forward5. Use Periodic table to answer the following: (a) Which has higher ionization potential Cs or Li? Why? (b) Arrange the following elements in increasing order of valence electrons, Ca, Rb, Br and Xe.arrow_forwardThe first four ionization energies of an element X are 578, 1817, 2745, and 11,577 kJ·mol–1. What is the most likely formula for the most stable ion of Xarrow_forward
- Use principles of atomic structure to answer each of the following: (1] (a) The radius of the Ca atom is 197 pm; the radius of the Ca2* ion is 99 pm. Account for the difference. (b) The lattice energy of CaO(s) is –3460 kJ/mol; the lattice energy of K20 is –2240 kJ/mol. Account for the difference. (c) Given these ionization values, explain the difference between Ca and K with regard to their first and second ionization energies. Element First lonization Energy (kJ/mol) Second lonization Energy (kJ/mol) K 419 3050 Ca 590 1140 (d) The first ionization energy of Mg is 738 kJ/mol and that of Al is 578 kJ/mol. Account for this difference.arrow_forwardThe first three ionization energies of an element X are 900, 1745, and 14912 kJ·mol–1. What is the most likely formula for the stable ion of X?arrow_forwardConsider the elements Li, K, Cl, C, Ne, and Ar. From this list, select the element that (a) is most electronegative, (b) has the greatest metallic character, (c) most readily forms a positive ion, (d) has the smallest atomic radius, (e) forms p bonds most readily, (f) has multiple allotropes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY