Concept explainers
(a)
Interpretation:
The hybridization of carbon atoms in carbon nanotubes, and the hybridization of boron and nitrogen atoms in boron nitride nanotubes have to be given.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 8.31CE
The hybridization of carbon atoms in carbon nanotubes is
The hybridization of boron atoms in boron nitride nanotubes is
The hybridization of nitrogen atoms in boron nitride nanotubes is
Explanation of Solution
Carbon nanotubes are one-dimensional nanomaterial with density ranging from
Boron nitride nanotubes are a polymorph of boron nitride. They have similar structures to that of carbon nanotubes except that boron and nitride atoms in boron nitride nanotubes replace carbon atoms. Boron nitride nanotube is an electrical insulator. The boron and nitrogen atoms in boron nitride nanotubes are
(b)
Interpretation:
The number of hexagons that must be strung together around the circumference of a nanotube has to be given.
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Each unit in the given nanotube contains two hexagons, therefore, sixteen hexagons per circumference. The number of hexagons that must be strung together around the circumference of a nanotube is eight.
(c)
Interpretation:
The reason why the hydrogenation of Buckminsterfullerene stops at a certain point has to be explained.
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
In buckminsterfullerene, the carbon atoms are planar and it is
(d)
Interpretation:
The structure of buckminsterfullerene has to be explained and the reason why boron nitride cannot form spheres has to be given.
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Buckminsterfullerene is a type of fullerene with a formula
The spherical structures require the formation of five-member rings. Boron nitride cannot form these rings because they require high-energy boron-boron or nitrogen-nitrogen bonds.
(e)
Interpretation:
The density of the cubic boron nitride has to be calculated.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 8.31CE
The density of the cubic boron nitride is
Explanation of Solution
Given,
Edge length of the unit cell is
The number of atoms in the unit cell of face-centered cubic cell is four.
The mass of four atoms in the unit cell is calculated from the molar mass of boron nitride and
Mass=
The volume of the cubic unit cell is the length of the edge raised to its third power. The volume is calculated as,
The density is calculated as,
The density of the cubic boron nitride is
(f)
Interpretation:
The form of boron nitride that is favored at high pressures has to be given.
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 8.31CE
At high pressures, the cubic form of boron nitride is more favored.
Explanation of Solution
Cubic boron nitride is formed by high pressure, high temperature treatment of hexagonal boron nitride.
Cubic form of boron nitride is analogue to structure of diamond.
Hexagonal form of boron nitride is analogue to structure of graphite.
At high pressures, the cubic form of boron nitride is more favored since it is analogous to the structure of diamond.
Want to see more full solutions like this?
Chapter 8 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- (ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward(ME EX1) Prblm #4-11 Can you please help me and explain these I'm very confused in detail please. Prblm number 9 I don't understand at all (its soo confusing to me and redraw it so I can better depict it).arrow_forward
- ME EX1) Prblm #19-20 I'm so confused with these problems. Can you please help me solve them and explain them? Problems number 19-20, and thanks! step by step and in detail for me please helparrow_forwardCalculate the flux of oxygen between the ocean and the atmosphere, given that: Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturatedarrow_forward( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...arrow_forward
- A. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation). B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic). (Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in the largest.) 1. A.Electrons in a cyclic conjugated system. 18 B.The compound is (a, aa, or na) a 2. A.Electrons in a cyclic conjugated system. 10 B.The compound is (a, aa, or na) naarrow_forwardWater is boiling at 1 atm pressure in a stainless steel pan on an electric range. It is observed that 2 kg of liquid water evaporates in 30 min. Find the rate of heat transfer to the water (kW).arrow_forwardCould you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the resonance structures that were given please.arrow_forward
- Could you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the question.arrow_forwardplease solve. If the answer is "no error" and it asks me to type something, and i typed a-helix, its always wrong.arrow_forwardCan you please solve and explain this for me in a simple way? I cant seem to comprehend this problem.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)