Concept explainers
(a)
Interpretation:
The volume of nitrogen has to be given.
Concept Introduction:
The volume of nitrogen gas can be find using the ideal gas equation,
Where P is the pressure of the gas.
V is the volume of the gas.
R is gas constant
T is temperature in Kelvin.
n is the number of moles of the substance.
(a)

Answer to Problem 8G.5E
The volume of the nitrogen gas is
Explanation of Solution
Given,
The pressure (P) of the gas is
The temperature of the gas is
The mass of the lead azide is 1.5g.
The molar mass of lead azide is 291.24g.
The balanced equation is,
The mass of lead azide is converted to moles as,
The volume of nitrogen can be calculated as,
The volume of one mole nitrogen is
The volume for three-moles of nitrogen is
The volume of the nitrogen gas is
(b)
Interpretation:
The volume of nitrogen gas produce by 1.5g of mercury azide is smaller or larger has to be given.
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 8G.5E
The volume of nitrogen produced by mercury azide is larger than the volume of nitrogen produced by lead azide.
Explanation of Solution
Given,
The pressure (P) of the gas is
The temperature of the gas is
The mass of the mercury azide is 1.5g.
The molar mass of mercury azide is 200.59g.
The balanced equation is,
The mass of mercury is converted to moles as,
The volume of nitrogen can be calculated as,
The volume of one mole nitrogen is
The volume for three-moles of nitrogen is
The volume of nitrogen produced by mercury azide is larger than the volume of nitrogen produced by lead azide.
(c)
Interpretation:
The reason that the metal azide is potent explosives has to be given.
(c)

Answer to Problem 8G.5E
The metal azide is potent explosives because azide ion is
Explanation of Solution
Metal azides are explosive because although the diatomic form of nitrogen is very stable - that is, the triple bond that holds the nitrogen together is very strong and the metal azides themselves are unstable as the bonds between nitrogen atoms and other atoms weak by comparison. Therefore, little energy is required to overcome these weak bonds, but a great deal of energy is released when the strong triple bond in nitrogen are formed. The rapidity of the reaction is due to the weakness of the bonds in metal azides and the high quantity of overall energy released is due to the much higher strength of the triple bonds, produce the explosive qualities of these compounds.
Want to see more full solutions like this?
Chapter 8 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning





