Concept explainers
(a)
Interpretation:
The volume of nitrogen has to be given.
Concept Introduction:
The volume of nitrogen gas can be find using the ideal gas equation,
Where P is the pressure of the gas.
V is the volume of the gas.
R is gas constant
T is temperature in Kelvin.
n is the number of moles of the substance.
(a)
Answer to Problem 8G.5E
The volume of the nitrogen gas is
Explanation of Solution
Given,
The pressure (P) of the gas is
The temperature of the gas is
The mass of the lead azide is 1.5g.
The molar mass of lead azide is 291.24g.
The balanced equation is,
The mass of lead azide is converted to moles as,
The volume of nitrogen can be calculated as,
The volume of one mole nitrogen is
The volume for three-moles of nitrogen is
The volume of the nitrogen gas is
(b)
Interpretation:
The volume of nitrogen gas produce by 1.5g of mercury azide is smaller or larger has to be given.
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 8G.5E
The volume of nitrogen produced by mercury azide is larger than the volume of nitrogen produced by lead azide.
Explanation of Solution
Given,
The pressure (P) of the gas is
The temperature of the gas is
The mass of the mercury azide is 1.5g.
The molar mass of mercury azide is 200.59g.
The balanced equation is,
The mass of mercury is converted to moles as,
The volume of nitrogen can be calculated as,
The volume of one mole nitrogen is
The volume for three-moles of nitrogen is
The volume of nitrogen produced by mercury azide is larger than the volume of nitrogen produced by lead azide.
(c)
Interpretation:
The reason that the metal azide is potent explosives has to be given.
(c)
Answer to Problem 8G.5E
The metal azide is potent explosives because azide ion is
Explanation of Solution
Metal azides are explosive because although the diatomic form of nitrogen is very stable - that is, the triple bond that holds the nitrogen together is very strong and the metal azides themselves are unstable as the bonds between nitrogen atoms and other atoms weak by comparison. Therefore, little energy is required to overcome these weak bonds, but a great deal of energy is released when the strong triple bond in nitrogen are formed. The rapidity of the reaction is due to the weakness of the bonds in metal azides and the high quantity of overall energy released is due to the much higher strength of the triple bonds, produce the explosive qualities of these compounds.
Want to see more full solutions like this?
Chapter 8 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Xenon trioxide, XeO3, is reduced to xenon in acidic solution by iodide ion. Iodide ion is oxidized to iodine, I2. Write a balanced chemical equation for the reaction.arrow_forwardSodium perchlorate, NaClO4, is produced by electrolysis of sodium chlorate, NaClO3. If a current of 2.50 103 A passes through an electrolytic cell, how many kilograms of sodium perchlorate are produced per hour?arrow_forwardThe amount of sodium hypochlorite in a bleach solution can be determined by using a given volume of bleach to oxidize excess iodide ion to iodine, because the reaction goes to completion. The amount of iodine produced is then determined by titration with sodium thiosulfate, Na2S2O3, which is oxidized to sodium tetrathionate, Na2S4O6. Potassium iodide was added in excess to 5.00 mL of bleach (density = 1.00 g/mL). This solution, containing the iodine released in the reaction, was titrated with 0.100 M Na2S2O3. If 34.6 mL of sodium thiosulfate was required to reach the endpoint (detected by disappearance of the blue color of the starch iodine complex), what was the mass percentage of NaClO in the bleach?arrow_forward
- Phosphorous acid, H3PO3, is oxidized to phosphoric acid, H3PO4, by nitric acid, which is reduced to nitrogen monoxide, NO. Write the balanced equation for this reaction.arrow_forwardThe use of silica to form slag in the production of phospho-rus from phosphate rock was introduced by Robert Boyle morethan 300 years ago. When fluorapatite [Ca₅(PO₄)₃F] is used inphosphorus production, most of the fluorine atoms appear in theslag, but some end up in toxic and corrosive SiF₄ (g).(a) If 15% by mass of the fluorine in 100. kg of Ca₅(PO₄)₃F forms SiF₄, what volume of this gas is collected at 1.00 atm andthe industrial furnace temperature of 1450.°C?(b) In some facilities, the SiF₄ is used to produce sodium hexa-fluorosilicate (Na₄SiF₆) which is sold for water fluoridation: 2SiF₄(g)+Na₂CO₃(s)+H₂O(l) →Na₂SiF₆(aq)+SiO₂(s)+CO₂(g)+2HF(aq) How many cubic meters of drinking water can be fluoridated toa level of 1.0 ppm of Fusing the SiF₄ produced in part (a)?arrow_forwardLooking up one snowy afternoon from a book titled The Moral Case Against Turning Lead Into Gold (Or Vice Versa), your friend Lena (an expert chemist) says this: "Ammonium salts heated with aqueous hydroxides form ammonia, water, and a salt." Using Lena's statement, and what you already know about chemistry, predict the products of the following reaction. Be sure your chemical equation is balanced! NH4NO3(aq) + NaOH(aq) ->arrow_forward
- The elements sodium, aluminum, and chlorine are in the same period.(a) Which has the greatest electronegativity?(b) Which of the atoms is smallest?(c) Write the Lewis structure for the simplest covalent compound that can form between aluminum and chlorine.(d) Will the oxide of each element be acidic, basic, or amphoteric?arrow_forwardAluminum hydroxide reacts with phosphoric acid to give AlPO4. The substance is usedindustrially in adhesives, binders, and cements.(a) Write the balanced equation for the preparation of AlPO4from aluminumhydroxide and phosphoric acid.(b) If you begin with 152 g of aluminum hydroxide and 3.00 L of 0.750 Mphosphoric acid, what is the theoretical yield of AlPO4?(c) If you place 25.0 g of AlPO4in 1.00 L of water, what are the concentrations ofAl3+ and PO43− at equilibrium? (Neglect hydrolysis of aqueous Al3+ and PO43−ions.) Kspfor AlPO4is 1.3 × l0−20.(d) Does the solubility of AlPO4increase or decrease on adding HCl? Explain.arrow_forwardPlease Write the chemical equations for the following processes in the image below.arrow_forward
- A mixture of xenon and fluorine was heated. A sample of the white solid that formed reacted with hydrogen to yield 81 mL of xenon (at STP) and hydrogen fluoride, which was collected in water, giving a solution of hydrofluoric acid. The hydrofluoric acid solution was titrated, and 68.43 mL of 0.3172 M sodium hydroxide was required to reach the equivalence point. Determine the empirical formula for the white solid and write balanced chemical equations for the reactions involving xenon.arrow_forwardThe average daily mass of O2 taken up by sewage discharged in the United States is 59 g per person. How many liters of water at 9 ppm O2 are 50 % depleted of oxygen in 1 d0ay by a population of 1,200,000 people?arrow_forward4arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax