ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
7th Edition
ISBN: 9781319399849
Author: ATKINS
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 8G.5E

(a)

Interpretation Introduction

Interpretation:

The volume of nitrogen has to be given.

Concept Introduction:

The volume of nitrogen gas can be find using the ideal gas equation,

  PV=nRT

Where P is the pressure of the gas.

V is the volume of the gas.

R is gas constant (0.082057Latmmol-1k-1).

T is temperature in Kelvin.

n is the number of moles of the substance.

(a)

Expert Solution
Check Mark

Answer to Problem 8G.5E

The volume of the nitrogen gas is 0.35L.

Explanation of Solution

Given,

The pressure (P) of the gas is 1atm.

The temperature of the gas is 273K.

The mass of the lead azide is 1.5g.

The molar mass of lead azide is 291.24g.

The balanced equation is,

  Pb(N3)2(s)Pb(s)+3N2(g)

The mass of lead azide is converted to moles as,

  Grams1×1molMolarmass=moles

  1.5 g1×1mol291.24 g=0.00515 moles

  Molesof Lead azide=0.00515moles

The volume of nitrogen can be calculated as,

  PV=nRT

  V=nRTP

  V=(0.00515mol)(0.082057Latmmol-1K-1)(273K)1atm

  V=0.1153L

The volume of one mole nitrogen is 0.1153L.

The volume for three-moles of nitrogen is (0.1153×3)=0.35L.

The volume of the nitrogen gas is 0.35L.

(b)

Interpretation Introduction

Interpretation:

The volume of nitrogen gas produce by 1.5g of mercury azide is smaller or larger has to be given.

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 8G.5E

The volume of nitrogen produced by mercury azide is larger than the volume of nitrogen produced by lead azide.

Explanation of Solution

Given,

The pressure (P) of the gas is 1atm.

The temperature of the gas is 273K.

The mass of the mercury azide is 1.5g.

The molar mass of mercury azide is 200.59g.

The balanced equation is,

  Hg(N3)2(s)Hg(s)+3N2(g)

The mass of mercury is converted to moles as,

  Grams1×1molMolarmass=moles

  1.5g1×1mol200.59g=0.00748moles

  molesof mercury azide=0.00748moles

The volume of nitrogen can be calculated as,

  PV=nRT

  V=nRTP

  V=(0.00748)(0.082057Latmmol-1K-1)(273K)1atm

  V=0.1675 L

The volume of one mole nitrogen is 0.1675L.

The volume for three-moles of nitrogen is (0.1675×3)=0.50L.

The volume of nitrogen produced by mercury azide is larger than the volume of nitrogen produced by lead azide.

(c)

Interpretation Introduction

Interpretation:

The reason that the metal azide is potent explosives has to be given.

(c)

Expert Solution
Check Mark

Answer to Problem 8G.5E

The metal azide is potent explosives because azide ion is thermodynamically unstable.

Explanation of Solution

Metal azides are explosive because although the diatomic form of nitrogen is very stable - that is, the triple bond that holds the nitrogen together is very strong and the metal azides themselves are unstable as the bonds between nitrogen atoms and other atoms weak by comparison.  Therefore, little energy is required to overcome these weak bonds, but a great deal of energy is released when the strong triple bond in nitrogen are formed.  The rapidity of the reaction is due to the weakness of the bonds in metal azides and the high quantity of overall energy released is due to the much higher strength of the triple bonds, produce the explosive qualities of these compounds.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q.5(a) The alkali metals follow the noble gases in their atomic structure. What properties of these metals can be predicted from this information? (b) Arrange the carbonates of alkaline earth metals in order of thermal stability. (c) Explain the process involved in the manufacture of NaOH, Na2CO3 and NaHCO3. (d) Identify the element X in each of the following: (i) The oxide of XO2 has a high M.P., and is very abundant in nature. (ii) X forms three oxides: XO, XO2, X3O2. (iii) X forms compounds mainly in the +2 O.S., though some compounds in +4 state do exist. (iv) X occurs as several allotropes, including a molecular one. (e) Borazine reacts with three mole equivalents of HCl to give a material with chemical composition B3N3H9C13. (i) What is the structure of product? (ii) How does the isoelectronic benzene react with HCl? (f) Explain why bond length in NO (115 pm) is longer than that in nitrosonium ion (106 pm)?
Write the balanced chemical equation for conversion of Al(s) to KAl(SO4)2·12H2O(s) in aqueous solution.
Which description correctly describes a difference betweenthe chemistry of oxygen and sulfur?(a) Oxygen is a nonmetal and sulfur is a metalloid. (b) Oxygencan form more than four bonds, whereas sulfur cannot.(c) Sulfur has a higher electronegativity than oxygen.(d) Oxygen is better able to form π bonds than sulfur.

Chapter 8 Solutions

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM

Ch. 8 - Prob. 8A.7ECh. 8 - Prob. 8A.8ECh. 8 - Prob. 8A.9ECh. 8 - Prob. 8A.10ECh. 8 - Prob. 8A.11ECh. 8 - Prob. 8A.12ECh. 8 - Prob. 8A.13ECh. 8 - Prob. 8A.14ECh. 8 - Prob. 8A.15ECh. 8 - Prob. 8A.16ECh. 8 - Prob. 8A.17ECh. 8 - Prob. 8A.18ECh. 8 - Prob. 8A.19ECh. 8 - Prob. 8A.20ECh. 8 - Prob. 8B.1ASTCh. 8 - Prob. 8B.1BSTCh. 8 - Prob. 8B.2ASTCh. 8 - Prob. 8B.2BSTCh. 8 - Prob. 8B.1ECh. 8 - Prob. 8B.2ECh. 8 - Prob. 8B.3ECh. 8 - Prob. 8B.4ECh. 8 - Prob. 8B.5ECh. 8 - Prob. 8B.6ECh. 8 - Prob. 8B.7ECh. 8 - Prob. 8B.8ECh. 8 - Prob. 8C.1ASTCh. 8 - Prob. 8C.1BSTCh. 8 - Prob. 8C.2BSTCh. 8 - Prob. 8C.1ECh. 8 - Prob. 8C.2ECh. 8 - Prob. 8C.3ECh. 8 - Prob. 8C.4ECh. 8 - Prob. 8C.5ECh. 8 - Prob. 8C.6ECh. 8 - Prob. 8D.1ASTCh. 8 - Prob. 8D.1BSTCh. 8 - Prob. 8D.2ASTCh. 8 - Prob. 8D.2BSTCh. 8 - Prob. 8D.1ECh. 8 - Prob. 8D.2ECh. 8 - Prob. 8D.3ECh. 8 - Prob. 8D.4ECh. 8 - Prob. 8D.5ECh. 8 - Prob. 8D.6ECh. 8 - Prob. 8D.7ECh. 8 - Prob. 8D.8ECh. 8 - Prob. 8E.1ASTCh. 8 - Prob. 8E.1BSTCh. 8 - Prob. 8E.2ASTCh. 8 - Prob. 8E.2BSTCh. 8 - Prob. 8E.1ECh. 8 - Prob. 8E.2ECh. 8 - Prob. 8E.3ECh. 8 - Prob. 8E.4ECh. 8 - Prob. 8E.5ECh. 8 - Prob. 8E.6ECh. 8 - Prob. 8E.7ECh. 8 - Prob. 8E.8ECh. 8 - Prob. 8F.1ASTCh. 8 - Prob. 8F.1BSTCh. 8 - Prob. 8F.2ASTCh. 8 - Prob. 8F.2BSTCh. 8 - Prob. 8F.1ECh. 8 - Prob. 8F.2ECh. 8 - Prob. 8F.3ECh. 8 - Prob. 8F.4ECh. 8 - Prob. 8F.5ECh. 8 - Prob. 8F.6ECh. 8 - Prob. 8G.1ASTCh. 8 - Prob. 8G.1BSTCh. 8 - Prob. 8G.2ASTCh. 8 - Prob. 8G.2BSTCh. 8 - Prob. 8G.1ECh. 8 - Prob. 8G.2ECh. 8 - Prob. 8G.3ECh. 8 - Prob. 8G.4ECh. 8 - Prob. 8G.5ECh. 8 - Prob. 8G.6ECh. 8 - Prob. 8G.7ECh. 8 - Prob. 8G.8ECh. 8 - Prob. 8G.9ECh. 8 - Prob. 8G.10ECh. 8 - Prob. 8H.1ASTCh. 8 - Prob. 8H.1BSTCh. 8 - Prob. 8H.2ASTCh. 8 - Prob. 8H.2BSTCh. 8 - Prob. 8H.1ECh. 8 - Prob. 8H.2ECh. 8 - Prob. 8H.3ECh. 8 - Prob. 8H.4ECh. 8 - Prob. 8H.5ECh. 8 - Prob. 8H.6ECh. 8 - Prob. 8H.7ECh. 8 - Prob. 8H.8ECh. 8 - Prob. 8H.10ECh. 8 - Prob. 8H.11ECh. 8 - Prob. 8H.12ECh. 8 - Prob. 8I.1ASTCh. 8 - Prob. 8I.1BSTCh. 8 - Prob. 8I.2ASTCh. 8 - Prob. 8I.2BSTCh. 8 - Prob. 8I.1ECh. 8 - Prob. 8I.2ECh. 8 - Prob. 8I.3ECh. 8 - Prob. 8I.5ECh. 8 - Prob. 8I.6ECh. 8 - Prob. 8I.7ECh. 8 - Prob. 8I.8ECh. 8 - Prob. 8I.9ECh. 8 - Prob. 8I.10ECh. 8 - Prob. 8I.11ECh. 8 - Prob. 8I.12ECh. 8 - Prob. 8I.13ECh. 8 - Prob. 8I.14ECh. 8 - Prob. 8I.15ECh. 8 - Prob. 8I.16ECh. 8 - Prob. 8J.1ASTCh. 8 - Prob. 8J.1BSTCh. 8 - Prob. 8J.1ECh. 8 - Prob. 8J.2ECh. 8 - Prob. 8J.3ECh. 8 - Prob. 8J.4ECh. 8 - Prob. 8J.5ECh. 8 - Prob. 8J.6ECh. 8 - Prob. 8J.7ECh. 8 - Prob. 8J.8ECh. 8 - Prob. 8.3ECh. 8 - Prob. 8.4ECh. 8 - Prob. 8.5ECh. 8 - Prob. 8.6ECh. 8 - Prob. 8.7ECh. 8 - Prob. 8.8ECh. 8 - Prob. 8.9ECh. 8 - Prob. 8.11ECh. 8 - Prob. 8.12ECh. 8 - Prob. 8.13ECh. 8 - Prob. 8.14ECh. 8 - Prob. 8.15ECh. 8 - Prob. 8.17ECh. 8 - Prob. 8.18ECh. 8 - Prob. 8.19ECh. 8 - Prob. 8.20ECh. 8 - Prob. 8.21ECh. 8 - Prob. 8.22ECh. 8 - Prob. 8.25ECh. 8 - Prob. 8.29ECh. 8 - Prob. 8.31CE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax