Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
11th Edition
ISBN: 9781305705159
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.63P
8-63 The pH of a solution made by dissolving 1.0 mol of propanoic acid and 1.0 mol of sodium propanoate in 1.0 L of water is 4.85.
(a) What would the pH be if we used 0.10 mol of each (in 1 L of water) instead of 1.0 mol?
(b) With respect to buffer capacity, how would the two solutions differ?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
5:50 1
Search
Question 5 of 20
Submit
Determine the mass of solid NaCH;COO that
must be dissolved in an existing 500.0 mL
solution of 0.200 M CH3COOH to form a buffer
with a pH equal to 5.00. The value of Ka for
CH-COОH is 1.8 х 10-5.
1
2
Let x represent the original concentration of
CH;COO in the water. Based on the given
values, set up the ICE table in order to
determine the unknown.
CH3COOH+ H20(1) =H;O*(aq) +CH3COO-(a
Initial (M)
Change (M)
Equilibrium
(M)
5 RESET
0.200
5.00
-5.00
1.0 x 10-9
-1.0 × 10-9
1.0 x 10-5
-1.0 x 10-5
1.8 x 10-5
-1.8 x 10-5
х+ 5.00
x - 5.00
x + 1.0 × 10-9
х - 1.0 х 10-9
1.0 x 10-5
x - 1.0 × 10-5
x + 1.8 × 10-5
х - 1.8 х 10-5
You are asked to prepare a pH = 3.00 buffer starting from 2.00 L of 0.025 M solution of benzoic acid (C6H5COOH).
(a) What is the pH of the benzoic acid solution prior to adding sodium benzoate? (hint: write the reaction equation for the acid dissociation and then use the equilibrium constant expression to calculate [H + ])
(b) How many grams of sodium benzoate should be added to prepare the buffer? Neglect the small volume change that occurs when the sodium benzoate is added.(hint: use the equilibrium constant expression to calculate [C6H5COO− ] in the buffer)
You are asked to prepare a pH = 4.00 buffer startingfrom 1.50 L of 0.0200 M solution of benzoic acid (C6H5COOH) and any amount you need of sodium benzoate(C6H5COONa). (a) What is the pH of the benzoic acidsolution prior to adding sodium benzoate? (b) How manygrams of sodium benzoate should be added to prepare thebuffer? Neglect the small volume change that occurs whenthe sodium benzoate is added.
Chapter 8 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
Ch. 8.3 - Problem 8-1 Draw the acid and base reactions for...Ch. 8.4 - Prob. 8.2PCh. 8.5 - Prob. 8.3PCh. 8.5 - Problem 8-4 Which is the stronger acid? (a)...Ch. 8.6 - Problem 8-5 Write the balanced net ionic equation...Ch. 8.7 - Problem 8-6 The [OH-] of an aqueous solution is M....Ch. 8.8 - Problem 8-7 (a) The [H3O+] of an acidic solution...Ch. 8.8 - Problem 8-8 The [OH-] of a solution is M. What are...Ch. 8.9 - Problem 8-9 Calculate the concentration of an...Ch. 8.10 - Problem 8-10 What is the pH of a buffer solution...
Ch. 8.11 - Problem 8-11 What is the pH of a boric acid buffer...Ch. 8.12 - Prob. 8.12PCh. 8 - 8-13 Define (a) an Arrhenius acid and (b) an...Ch. 8 - 8-14 Write an equation for the reaction that takes...Ch. 8 - 8-15 Write an equation for the reaction that takes...Ch. 8 - 8-16 For each of the following, tell whether the...Ch. 8 - 8-17 For each of the following, tell whether the...Ch. 8 - 8-18 Which of these acids are monoprotic, which...Ch. 8 - 8-19 Define (a) a Brønsted—Lowry acid and (b) a...Ch. 8 - 8-20 Write the formula for the conjugate base of...Ch. 8 - 8-21 Write the formula for the conjugate base of...Ch. 8 - Prob. 8.22PCh. 8 - Prob. 8.23PCh. 8 - Prob. 8.24PCh. 8 - 8-25 Draw the acid and base reactions for the...Ch. 8 - Prob. 8.26PCh. 8 - Prob. 8.27PCh. 8 - 8-28 Will carbon dioxide be evolved as a gas when...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - Prob. 8.31PCh. 8 - Prob. 8.32PCh. 8 - 8-33 Write an equation for the reaction of HCI...Ch. 8 - 8-34 When a solution of sodium hydroxide is added...Ch. 8 - 8-35 Given the following values of [H3O+),...Ch. 8 - 8-36 Given the following values of [OH-],...Ch. 8 - 8-37 What is the pH of each solution given the...Ch. 8 - 8-38 What is the pH and pOH of each solution given...Ch. 8 - 8-39 What is the pH of each solution given the...Ch. 8 - Prob. 8.40PCh. 8 - 8-41 What is the [OH-] and pOH of each solution?...Ch. 8 - Prob. 8.42PCh. 8 - 8-43 What is the molarity of a solution made by...Ch. 8 - 8-44 What is the molarity of a solution made by...Ch. 8 - 8-45 Describe how you would prepare each of the...Ch. 8 - 8-46 If 25.0 mL of an aqueous solution of H2SO4...Ch. 8 - 8-47 A sample of 27.0 mL of 0.310 M NaOH is...Ch. 8 - 8-48 A 0.300 M solution of H2SO4 was used to...Ch. 8 - 8-49 A solution of NaOH base was titrated with...Ch. 8 - 8-50 The usual concentration of HCO3- ions in...Ch. 8 - 8-51 What is the end point of a titration?Ch. 8 - Prob. 8.52PCh. 8 - 8-53 Write equations to show what happens when, to...Ch. 8 - 8-54 Write equations to show what happens when, to...Ch. 8 - 8-55 We commonly refer to a buffer as consisting...Ch. 8 - Prob. 8.56PCh. 8 - Prob. 8.57PCh. 8 - 8-58 What is the connection between buffer action...Ch. 8 - Prob. 8.59PCh. 8 - 8-60 How is the buffer capacity affected by the...Ch. 8 - 8-61 Can 100 of 0.1 M phosphate buffer at pH 7.2...Ch. 8 - 8-62 What is the pH of a buffer solution made by...Ch. 8 - 8-63 The pH of a solution made by dissolving 1.0...Ch. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - 8-66 Calculate the pH of an aqueous solution...Ch. 8 - Prob. 8.67PCh. 8 - 8-68 If you have 100 mL of a 0.1 M buffer made of...Ch. 8 - Prob. 8.69PCh. 8 - Prob. 8.70PCh. 8 - 8-71 Explain why you do not need to know the...Ch. 8 - Prob. 8.72PCh. 8 - Prob. 8.73PCh. 8 - Prob. 8.74PCh. 8 - Prob. 8.75PCh. 8 - 8-76 (Chemical Connections 8B) Name the most...Ch. 8 - Prob. 8.77PCh. 8 - Prob. 8.78PCh. 8 - 8-79 (Chemical Connections 8D) Another form of the...Ch. 8 - Prob. 8.80PCh. 8 - Prob. 8.81PCh. 8 - 8-82 Assume that you have a dilute solution of HCI...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - 8-86 Following are three organic acids and the...Ch. 8 - 8-87 The pKavalue of barbituric acid is 5.0. If...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.89PCh. 8 - Prob. 8.90PCh. 8 - Prob. 8.91PCh. 8 - Prob. 8.92PCh. 8 - 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI...Ch. 8 - 8-94 Suppose you wish to make a buffer whose pH is...Ch. 8 - Prob. 8.95PCh. 8 - 8-96 Suppose you want to make a CH3COOH/CH3COO-...Ch. 8 - Prob. 8.97PCh. 8 - 8-98 When a solution prepared by dissolving 4.00 g...Ch. 8 - Prob. 8.99PCh. 8 - Prob. 8.100PCh. 8 - 8-101 Suppose you have an aqueous solution...Ch. 8 - Prob. 8.102PCh. 8 - 8-103 Suppose you have a phosphate buffer...Ch. 8 - Prob. 8.104PCh. 8 - Prob. 8.105PCh. 8 - Prob. 8.106PCh. 8 - 8-107 Following are pH ranges for several human...Ch. 8 - 8-108 What is the ratio of HPO42-/H2PO4- in a...Ch. 8 - Prob. 8.109PCh. 8 - 8-110 A concentrated hydrochloric acid solution...Ch. 8 - 8-111 The volume of an adult's stomach ranges from...Ch. 8 - 8-112 Consider an initial 0.040 M hypobromous acid...Ch. 8 - Prob. 8.113PCh. 8 - Prob. 8.114PCh. 8 - 8-115 When a solution prepared by dissolving 0.125...Ch. 8 - 8-116 A railroad tank car derails and spills 26...Ch. 8 - Prob. 8.117P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI solution require the same amount of 1.0 M NaOH to hit a titration end point? Explain.arrow_forward8-55 We commonly refer to a buffer as consisting of approximately equal molar amounts of a weak acid and its conjugate base—for example, CH3COOH and CH3COO-. Is it also possible to have a buffer consisting of approximately equal molar amounts of a weak base and its conjugate acid? Explain.arrow_forward8-60 How is the buffer capacity affected by the ratio of the conjugate base to the conjugate acid?arrow_forward
- What is the pH of a buffer that is 0.150 M in a weak acid and 0.150 M in the acids conjugate base? The acids ionization constant is 6.8 106.arrow_forward8-51 What is the end point of a titration?arrow_forward8-94 Suppose you wish to make a buffer whose pH is 8.21. You have available 1 L of 0.100 M NaH2PO4 and solid Na2HPO4. How many grams of the solid Na2HPO4 must be added to the stock solution to accomplish this task? (Assume that the volume remains 1 L.)arrow_forward
- 8-115 When a solution prepared by dissolving 0.125 g of an unknown diprotic acid in 25.0 mL of water is titrated with 0.200 M NaOH, 30.0 ml, of the NaOH solution is needed to neutralize the acid. Determine the molarity of the acid solution. What is the molar mass of the unknown diprotic acid?arrow_forwardSketch the titration curve for a weak acid titrated by a strong base. When performing calculations concerning weak acidstrong base titrations, the general two-slep procedure is to solve a stoichiometry problem first, then to solve an equilibrium problem to determine the pH. What reaction takes place in the stoichiometry part of the problem? What is assumed about this reaction? At the various points in your titration curve, list the major species present after the strong base (NaOH, for example) reacts to completion with the weak acid, HA. What equilibrium problem would you solve at the various points in your titration curve to calculate the pH? Why is pH 7.0 at the equivalence point of a weak acid-strong base titration? Does the pH at the halfway point to equivalence have to be less than 7.0? What does the pH at the halfway point equal? Compare and contrast the titration curves for a strong acidstrong base titration and a weak acidstrong base titration.arrow_forwardUsing the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forward
- A buffer is prepared in which the ratio [ H2PO4 ]/[ HPO42 ]is 3.0. (a) What is the pH of this buffer? (b) Enough strong acid is added to convert 15% of HPO42- to H2PO4-. What is the pH of the resulting solution? (c) Enough strong base is added to make the pH 7.00. What is the ratio of [H2PO4-] to [HPO42-] at this point?arrow_forwardA good buffer generally contains relatively equal concentrations of weak acid and conjugate base. If you wanted to buffer a solution at pH = 4.00 or pH = 10.00, how would you decide which weak acidconjugate base or weak baseconjugate acid pair to use? The second characteristic of a good buffer is good buffering capacity. What is the capacity of a buffer? How do the following buffers differ in capacity? How do they differ in pH? 0.01 M acetic acid/0.01 M sodium acetate 0.1 M acetic acid/0.1 M sodium acetate 1.0 M acetic acid/1.0 M sodium acetatearrow_forward8-101 Suppose you have an aqueous solution prepared by dissolving 0.050 mol of NaH2PO4 in 1 L of water. This solution is not a buffer, but suppose you want to make it into one. How many moles of solid Na2HPO4 must you add to this aqueous solution to make it into: (a) A buffer of pH 7.21 (b) A buffer of pH 6.21 (c) A buffer of pH 8.21arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License