Concept explainers
(a)
Interpretation:
The heat capacity of liquid toluene at 40°C should be calculated.
Concept introduction:
The amount of heat required to increase the temperature of the system by one degree is known as heat capacity. The unit to express the heat capacity is thermal energy per degree temperature.
(b)
Interpretation:
The heat capacity of toluene vapor at 40° C should be calculated.
Concept introduction:
The amount of heat required to increase the temperature of the system by one degree is known as heat capacity. The unit to express the heat capacity is thermal energy per degree temperature.
(c)
Interpretation:
The heat capacity of solid carbon at 40°C should be calculated.
Concept introduction:
The amount of heat required to increase the temperature of the system by one degree is known as heat capacity. The unit to express the heat capacity is thermal energy per degree temperature.
(d)
Interpretation:
The change in enthalpy for toluene should be calculated.
Concept introduction:
The amount of heat required to increase the temperature of the system by one degree is known as heat capacity. The unit to express the heat capacity is thermal energy per degree temperature.
(e)
Interpretation:
The change of enthalpy for solid calcium carbonate should be calculated.
Concept introduction:
The amount of heat required to increase the temperature of the system by one degree is known as heat capacity. The unit to express the heat capacity is thermal energy per degree temperature.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
- When one mol of KOH is neutralized by sulfuric acid, q=56 kJ. (This is called the heat of neutralization.) At 23.7C, 25.0 mL of 0.475 M H2SO4 is neutralized by 0.613 M KOH in a coffee-cup calorimeter. Assume that the specific heat of all solutions is 4.18J/gC, that the density of all solutions is 1.00 g/mL, and that volumes are additive. (a) How many mL of KOH is required to neutralize H2SO4? (b) What is the final temperature of the solution?arrow_forwardIf nitric acid were sufficiently heated, it can be decomposed into dinitrogen pentoxide and water vapor: 2HNO3(l)N2O5(g)+H2O(g)Hrxn=+176kJ (a) Calculate the enthalpy change that accompanies the reaction of 1.00 kg HNO3 (). (b) Is heat absorbed or released during the course of the reaction?arrow_forwardOne step in the manufacturing of sulfuric acid is the conversion of SO2(g) to SO3(g). The thermochemical equation for this process is SO2(g)+12O2(g)SO3(g)H=98.9kJ The second step combines the SO3 with H2O to make H2SO4. (a) Calculate the enthalpy change that accompanies the reaction to make 1.00 kg SO3(g). (b) Is heat absorbed or released in this process?arrow_forward
- The heat of neutralization, Hneut, can be defined as the amount of heat released (or absorbed), q, per mole of acid (or base) neutralized. Hneut for nitric acid is -52 kJ/mol HNO3. At 27.3C, 50.00 mL of 0.743M HNO3 is neutralized by 1.00 M Sr(OH)2 in a coffee-cup calorimeter. (a) How many mL of Sr(OH)2 were used in the neutralization? (b) What is the final temperature of the resulting solution? (Use the assumptions in Question 11.)arrow_forwardWould the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forwardThe thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forward
- Write reactions for which the enthalpy change will be a. Hf for solid aluminum oxide. b. the standard enthalpy of combustion of liquid ethanol, C2H5OH(l). c. the standard enthalpy of neutralization of sodium hydroxide solution by hydrochloric acid. d. Hf for gaseous vinyl chloride, C2H3Cl(g). e. the enthalpy of combustion of liquid benzene, C6H6(l). f. the enthalpy of solution of solid ammonium bromide.arrow_forwardAn industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forwardBenzoic acid, C6H5COOH, is a common standard used in bomb calorimeters, which maintain a constant volume. If 1.20 g of benzoic acid gives off 31, 723 J of energy when burned in the presence of excess oxygen and in a water bath having a temperature of 24.6 C, calculate q, w, H, and U for the reaction.arrow_forward
- The enthalpy of combustion of diamond is -395.4 kJ/mol. C s, dia O2 g CO2 g Determine the fH of C s, dia.arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forwardDissolving 6.00 g CaCl2 in 300 mL of water causes the temperature of the solution to increase by 3.43 C. Assume that the specific heat of the solution is 4.18 J/g K and its mass is 306 g. (a) Calculate the enthalpy change when the CaCl2 dissolves. Is the process exothermic or endothermic? (b) Determine H on a molar basis for CaCl2(s)H2OCa2+(aq)+2Cl(aq)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning