Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version
Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version
9th Edition
ISBN: 9781305968707
Author: Spencer L. Seager
Publisher: Brooks Cole
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 8.43E
Interpretation Introduction

(a)

Interpretation:

The equilibrium expression for the given reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.43E

The equilibrium constant for the given gaseous reaction is expressed as,K=[Ni(NH3)62+][Ni2+][NH3]6

Explanation of Solution

The given gaseous reaction is represented as,Ni2++6NH3Ni(NH3)62+

The concentration of the product Ni(NH3)62+ will be in the numerator and is raised to the power 1. The concentration of reactant Ni2+ and NH3 will be in the denominator. The concentration of reactant Ni2+ is raised to the power 1 and NH3 is raised to the power 6. Therefore, the equilibrium constant for the above reaction is expressed as,K=[Ni(NH3)62+][Ni2+][NH3]6

Conclusion

The equilibrium constant for the given reaction is expressed as,K=[Ni(NH3)62+][Ni2+][NH3]6

Interpretation Introduction

(b)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.43E

The equilibrium constant for the given gaseous reaction is expressed as,K=[Sn4+][Fe2+]2[Sn2+][Fe3+]2

Explanation of Solution

The given gaseous reaction is represented as,Sn2++2Fe3+Sn4++2Fe2+

The concentration of the product Sn4+ and Fe2+ will be in the numerator. The concentration of the product Sn4+ is raised to 1 and Fe2+ is raised to the power 2. The concentration of reactant Sn2+ and Fe3+ will be in the denominator. The concentration of reactant Sn2+ is raised to the power 1 and Fe3+ is raised to the power 2. Therefore, the equilibrium constant for the above reaction is expressed as,K=[Sn4+][Fe2+]2[Sn2+][Fe3+]2

Conclusion

The equilibrium constant for the given reaction is expressed as,K=[Sn4+][Fe2+]2[Sn2+][Fe3+]2

Interpretation Introduction

(c)

Interpretation:

The equilibrium expression for the given gaseous reaction is to be stated.

Concept Introduction:

The equilibrium constant of a reaction is expressed as the ratio of concentration of products and reactants each raised to the power of their stoichiometric coefficients. A general equilibrium reaction is represented as,aA+bBcC+dD

The equilibrium constant for the above chemical reaction is expressed as,K=[C]c[D]d[A]a[B]b

Where,

[ A ] represents the equilibrium concentration of reactant A.

[ B ] represents the equilibrium concentration of reactant B.

[ C ] represents the equilibrium concentration of product C.

[ D ] represents the equilibrium concentration of product D.

a represents the stoichiometric coefficient of reactant A.

b represents the stoichiometric coefficient of reactant B.

c represents the stoichiometric coefficient of product C.

d represents the stoichiometric coefficient of product D.

Expert Solution
Check Mark

Answer to Problem 8.43E

The equilibrium constant for the given gaseous reaction is expressed as,K=[Cl2][F]2[Cl]2[F2]

Explanation of Solution

The given gaseous reaction is represented as,F2+2Cl2F+Cl2

The concentration of the product F and Cl2 will be in the numerator. The concentration of the product Cl2 is raised to 1 and F is raised to the power 2. The concentration of reactant Cl and F2 will be in the denominator. The concentration of reactant F2 is raised to the power 1 and Cl is raised to the power 2. Therefore, the equilibrium constant for the above reaction is expressed as,K=[Cl2][F]2[Cl]2[F2]

Conclusion

The equilibrium constant for the given reaction is expressed as,K=[Cl2][F]2[Cl]2[F2]

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution.  How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…

Chapter 8 Solutions

Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version

Ch. 8 - Classify the following processes according to...Ch. 8 - Describe the observations or measurements that...Ch. 8 - Prob. 8.13ECh. 8 - Consider the following hypothetical reaction: A+BC...Ch. 8 - Consider the following hypothetical reaction: A+BC...Ch. 8 - A reaction generates chlorine gas (Cl2) as a...Ch. 8 - A reaction generates hydrogen gas (H2) as a...Ch. 8 - Prob. 8.18ECh. 8 - Prob. 8.19ECh. 8 - In each of the following, which reaction mechanism...Ch. 8 - Which reaction mechanism assumptions are...Ch. 8 - Prob. 8.22ECh. 8 - Sketch energy diagrams to represent each of the...Ch. 8 - Prob. 8.24ECh. 8 - Use energy diagrams to compare catalyzed and...Ch. 8 - Prob. 8.26ECh. 8 - The following reactions are proposed. Make a rough...Ch. 8 - Prob. 8.28ECh. 8 - Prob. 8.29ECh. 8 - Suppose you are running a reaction and you want to...Ch. 8 - A reaction is started by mixing reactants. As time...Ch. 8 - A reaction is run at 10C and takes 3.7hours to go...Ch. 8 - What factor is more important than simply the...Ch. 8 - Prob. 8.34ECh. 8 - Describe the establishment of equilibrium in a...Ch. 8 - Prob. 8.36ECh. 8 - Prob. 8.37ECh. 8 - Colorless hydrogen gas (H2) and red-brown colored...Ch. 8 - Colorless N2O4 gas decomposes to form red-brown...Ch. 8 - Prob. 8.40ECh. 8 - Write an equilibrium expression for each of the...Ch. 8 - Prob. 8.42ECh. 8 - Prob. 8.43ECh. 8 - Prob. 8.44ECh. 8 - Prob. 8.45ECh. 8 - A sample of gaseous BrCl is allowed to decompose...Ch. 8 - At 600C, gaseous CO and Cl2 are mixed together in...Ch. 8 - A mixture of the gases NOCl, Cl2 and NO is allowed...Ch. 8 - Consider the following equilibrium constants....Ch. 8 - Prob. 8.50ECh. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Use Le Chteliers principle to predict the...Ch. 8 - Prob. 8.54ECh. 8 - Tell what will happen to each equilibrium...Ch. 8 - Tell what will happen to each equilibrium...Ch. 8 - The gaseous reaction 2HBr(g)H2(g)+Br2(g) is...Ch. 8 - Prob. 8.58ECh. 8 - Prob. 8.59ECh. 8 - Prob. 8.60ECh. 8 - Prob. 8.61ECh. 8 - Prob. 8.62ECh. 8 - Prob. 8.63ECh. 8 - Prob. 8.64ECh. 8 - Prob. 8.65ECh. 8 - Prob. 8.66ECh. 8 - Refer to Figure 8.10 and answer the questions....Ch. 8 - Refer to Figure 8.13 and answer the questions....Ch. 8 - Prob. 8.69ECh. 8 - Prob. 8.70ECh. 8 - Suppose you have two identical unopened bottles of...Ch. 8 - Someone once suggested that it is impossible to...Ch. 8 - A reaction takes place between an acid and...Ch. 8 - If the reaction:A+BC+D is designated as first...Ch. 8 - Prob. 8.75ECh. 8 - A book is held 6 feet above the floor and then...Ch. 8 - Prob. 8.77ECh. 8 - Prob. 8.78ECh. 8 - Prob. 8.79ECh. 8 - Prob. 8.80ECh. 8 - Prob. 8.81ECh. 8 - Which of the following is the best example of...Ch. 8 - Which is NOT an example of an endothermic change?...Ch. 8 - Which of the following processes is endothermic?...Ch. 8 - Which sentence best describes the following...Ch. 8 - By which of the following mechanisms does a...Ch. 8 - Which of the following is NOT true of reversible...Ch. 8 - Given the reaction: 2CO(g)+O2(g)2CO2(g) When there...Ch. 8 - Prob. 8.89ECh. 8 - Consider the reaction N2(g)+3H2(g)2NH3(g)+heat....Ch. 8 - Prob. 8.91ECh. 8 - Prob. 8.92ECh. 8 - For the reaction: H2(g)+Br2(g)2HBr(g), the...Ch. 8 - Prob. 8.94E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY