Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
2nd Edition
ISBN: 9780393655551
Author: KARTY, Joel
Publisher: W. W. Norton & Company
Question
Book Icon
Chapter 8, Problem 8.38P
Interpretation Introduction

(a)

Interpretation:

The mechanism, SN1 or SN2, for the given mechanism is to be explained.

Concept introduction:

The unimolecular nucleophilic substitution reaction is the first order reaction, that is, the reaction rate is directly proportional to the concentration of substrate; independent of the concentration of the nucleophile or the base.

The bimolecular nucleophilic substitution (SN2) reaction is the second order reaction, that is, the reaction rate is directly proportional to both the concentration of substrate and the concentration of the nucleophile or the base.

Interpretation Introduction

(b)

Interpretation:

The complete mechanism with appropriate arrows for the given reaction is to be drawn.

Concept introduction:

A unimolecular nucleophilic substitution (SN1) reaction consists of two steps. First, the leaving group leaves in a heterolysis step, yielding a carbocation intermediate, then a nucleophile attacks the carbocation in a coordination step. Intermediates are not included in the overall mechanism.

Interpretation Introduction

(c)

Interpretation:

The change in the reaction rate, if the concentration of KI is doubled, is to be explained.

Concept introduction:

The unimolecular nucleophilic substitution reaction is the first order reaction, that is, the reaction rate is directly proportional to the concentration of the substrate; independent of the concentration of the nucleophile or the base.

Blurred answer
Students have asked these similar questions
Don't used hand raiting and don't used Ai solution
13.84. Chlorine atoms react with methane, forming HCI and CH3. The rate constant for the reaction is 6.0 × 107 M¹ s¹ at 298 K. When the experiment was run at three other temperatures, the following data were collected: T (K) k (M-1 s-1) 303 6.5 × 107 308 7.0 × 107 313 7.5 x 107 a. Calculate the values of the activation energy and the frequency factor for the reaction. b. What is the value of the rate constant in the lower stratosphere, where T = 218 K?
My Organic Chemistry textbook says about the formation of cyclic hemiacetals, "Such intramolecular reactions to form five- and six-membered rings are faster than the corresponding intermolecular reactions.  The two reacting functional groups, in this case OH and C=O, are held in close proximity, increasing the probability of reaction."According to the book, the formation of cyclic hemiacetals occurs in acidic conditions. So my question is whether the carbonyl group in this reaction reacts first with the end alcohol on the same molecule or with the ethylene glycol.  And, given the explanation in the book, if it reacts first with ethylene glycol before its own end alcohol, why would it?  I don't need to know the final answer.  I need to know WHY it would not undergo an intermolecular reaction prior to reacting with the ethylene glycol if that is the case.  Please do not use an AI answer.

Chapter 8 Solutions

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)

Ch. 8 - Prob. 8.11PCh. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Prob. 8.15PCh. 8 - Prob. 8.16PCh. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Prob. 8.22PCh. 8 - Prob. 8.23PCh. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - Prob. 8.27PCh. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - Prob. 8.31PCh. 8 - Prob. 8.32PCh. 8 - Prob. 8.33PCh. 8 - Prob. 8.34PCh. 8 - Prob. 8.35PCh. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - Prob. 8.39PCh. 8 - Prob. 8.40PCh. 8 - Prob. 8.41PCh. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Prob. 8.45PCh. 8 - Prob. 8.46PCh. 8 - Prob. 8.47PCh. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - Prob. 8.54PCh. 8 - Prob. 8.55PCh. 8 - Prob. 8.56PCh. 8 - Prob. 8.57PCh. 8 - Prob. 8.58PCh. 8 - Prob. 8.59PCh. 8 - Prob. 8.60PCh. 8 - Prob. 8.61PCh. 8 - Prob. 8.62PCh. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - Prob. 8.67PCh. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - Prob. 8.70PCh. 8 - Prob. 8.71PCh. 8 - Prob. 8.72PCh. 8 - Prob. 8.73PCh. 8 - Prob. 8.74PCh. 8 - Prob. 8.75PCh. 8 - Prob. 8.76PCh. 8 - Prob. 8.1YTCh. 8 - Prob. 8.2YTCh. 8 - Prob. 8.3YTCh. 8 - Prob. 8.4YTCh. 8 - Prob. 8.5YTCh. 8 - Prob. 8.6YTCh. 8 - Prob. 8.7YTCh. 8 - Prob. 8.8YTCh. 8 - Prob. 8.9YTCh. 8 - Prob. 8.10YTCh. 8 - Prob. 8.11YTCh. 8 - Prob. 8.12YTCh. 8 - Prob. 8.13YTCh. 8 - Prob. 8.14YTCh. 8 - Prob. 8.15YTCh. 8 - Prob. 8.16YTCh. 8 - Prob. 8.17YTCh. 8 - Prob. 8.18YTCh. 8 - Prob. 8.19YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning