Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.2P
To determine
The material for bolt that should not exceed one third of its melting temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need quickly please please please
Which of these cast iron would allow the greatest amount of plastic deformation before fracture .
Nodular cast iron
Grey cast iron
White cast iron
None of them can be worked.
If the diameter of steel specimen stretched by tension load is doubled , then it’s tensile strength will be
Halved
Remain unaffected
Doubled
Become four times
Temperature is proportional with
Percent of elongation
Tensile strength
Modulus of elasticity
All above
The tensile strength of a steel specimen that have a 182 HB , equals to
490 MPa
910 MPa
627 MPa
Not given…
Task (3)
you are asked to perform tensile test on specimens of two different materials (A and B) and you obtained the
stress-strain diagram of the two specimens as shown in Figure 2:
400
350
300
250
Material A
200
150
100
50
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
Strain (mm/mm)
50
Material B
30
20
10
0.02
0.04
0.06
0.08
0.1
Strain (mm/mm)
Figure 2: Tensile Test Analysis
Stress (MPa)
Stress (MPa)
A combined section of steel and copper is subjected to a compressive load. Refer to the table below for the properties of each
Steel
Copper
Area, A
900 mm2
1,200 mm2
Modulus of elasticity, E
200 GPa
120 GPa
Allowable compressive stress
140 MPa
70 MPa
If the allowable strain for both materials is 0.0005, which of the following most nearly gives the maximum load the member can carry so that this allowable strain is not
exceeded?
Select the correct response
162.00 kN
185.00 kN
205.00 kN
175.00 kN
Chapter 8 Solutions
Materials Science And Engineering Properties
Ch. 8 - Prob. 1CQCh. 8 - Prob. 2CQCh. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - Prob. 8CQCh. 8 - Prob. 9CQCh. 8 - Prob. 10CQCh. 8 - Prob. 11CQ
Ch. 8 - Prob. 12CQCh. 8 - Prob. 13CQCh. 8 - Prob. 14CQCh. 8 - Prob. 15CQCh. 8 - Prob. 16CQCh. 8 - Prob. 17CQCh. 8 - Prob. 18CQCh. 8 - Prob. 19CQCh. 8 - Prob. 20CQCh. 8 - Prob. 21CQCh. 8 - Prob. 22CQCh. 8 - Prob. 23CQCh. 8 - Prob. 24CQCh. 8 - Prob. 25CQCh. 8 - Prob. 26CQCh. 8 - Prob. 27CQCh. 8 - Prob. 28CQCh. 8 - Prob. 29CQCh. 8 - Prob. 30CQCh. 8 - Prob. 31CQCh. 8 - Prob. 32CQCh. 8 - Prob. 33CQCh. 8 - Prob. 34CQCh. 8 - Prob. 35CQCh. 8 - Prob. 36CQCh. 8 - Prob. 37CQCh. 8 - Prob. 38CQCh. 8 - Prob. 39CQCh. 8 - Prob. 40CQCh. 8 - Prob. 41CQCh. 8 - Prob. 42CQCh. 8 - Prob. 43CQCh. 8 - Prob. 44CQCh. 8 - Prob. 45CQCh. 8 - Prob. 46CQCh. 8 - Prob. 47CQCh. 8 - Prob. 48CQCh. 8 - Prob. 49CQCh. 8 - Prob. 50CQCh. 8 - Prob. 51CQCh. 8 - Prob. 52CQCh. 8 - Prob. 53CQCh. 8 - Prob. 54CQCh. 8 - Prob. 55CQCh. 8 - Prob. 56CQCh. 8 - Prob. 57CQCh. 8 - Prob. 58CQCh. 8 - Prob. 59CQCh. 8 - Prob. 60CQCh. 8 - Prob. 61CQCh. 8 - Prob. 62CQCh. 8 - Prob. 63CQCh. 8 - Prob. 64CQCh. 8 - Prob. 65CQCh. 8 - Prob. 66CQCh. 8 - Prob. 67CQCh. 8 - Prob. 68CQCh. 8 - Prob. 69CQCh. 8 - Prob. 70CQCh. 8 - Prob. 71CQCh. 8 - Prob. 72CQCh. 8 - Prob. 73CQCh. 8 - Prob. 74CQCh. 8 - Prob. 75CQCh. 8 - Prob. 76CQCh. 8 - Prob. 77CQCh. 8 - Prob. 78CQCh. 8 - Prob. 79CQCh. 8 - Prob. 80CQCh. 8 - Prob. 81CQCh. 8 - Prob. 82CQCh. 8 - Prob. 83CQCh. 8 - Prob. 84CQCh. 8 - Prob. 85CQCh. 8 - Prob. 86CQCh. 8 - Prob. 87CQCh. 8 - Prob. 88CQCh. 8 - Prob. 89CQCh. 8 - Prob. 90CQCh. 8 - Prob. 91CQCh. 8 - Prob. 92CQCh. 8 - Prob. 93CQCh. 8 - Prob. 94CQCh. 8 - Prob. 95CQCh. 8 - Prob. 96CQCh. 8 - Prob. 97CQCh. 8 - Prob. 98CQCh. 8 - Prob. 99CQCh. 8 - Prob. 100CQCh. 8 - Prob. 101CQCh. 8 - Prob. 102CQCh. 8 - Prob. 103CQCh. 8 - Prob. 104CQCh. 8 - Prob. 105CQCh. 8 - Prob. 1ETSQCh. 8 - Prob. 2ETSQCh. 8 - Prob. 3ETSQCh. 8 - Prob. 4ETSQCh. 8 - Prob. 5ETSQCh. 8 - Prob. 6ETSQCh. 8 - Prob. 7ETSQCh. 8 - Prob. 8ETSQCh. 8 - Prob. 9ETSQCh. 8 - Prob. 10ETSQCh. 8 - Prob. 11ETSQCh. 8 - Prob. 12ETSQCh. 8 - Prob. 13ETSQCh. 8 - Prob. 14ETSQCh. 8 - Prob. 15ETSQCh. 8 - Prob. 16ETSQCh. 8 - Prob. 17ETSQCh. 8 - Prob. 18ETSQCh. 8 - Prob. 19ETSQCh. 8 - Prob. 20ETSQCh. 8 - Prob. 21ETSQCh. 8 - Prob. 8.1PCh. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Prob. 8.4PCh. 8 - The frame of a space shuttle type vehicle must...
Knowledge Booster
Similar questions
- A tensile test was performed on a metal specimen having a circular cross section with a diameter of 1 2 inch. The gage length (the length over which the elongation is measured) is 2 inches. For a load 13.5 kips, the elongation was 4.6610 3 inches. If the load is assumed to be within the linear elastic rang: of the material, determine the modulus of elasticity.arrow_forward(a) the modulus of elasticity in GPa for the Aluminum B) the proportional limit in MPa for the Aluminum C) the ultimate strength in MPa for the Aluminum D) Ductility of material based on percent elongationarrow_forwardQuestion 5 A steel component is subjected to a biaxial state of stress in which both stresses are tensile in nature, and having magnitudes 100 and 60 MPa. The plane at which the resultant stress has maximum obliquity with the normal (in degrees) isarrow_forward
- A strip of high-strength steel has a length of 30 cm and a cross section of 1 mm by 20 mm. The modulus of elasticity is 200 GPa and Poison’s ratio is 0.27. It is subjected to an axial load of 15000 N, and it is instrumented with two axial strain gauges with R= 120 Ω and a gauge factor of 2.10. The two fixed resistors are also 120 Ω, and the supply voltage is 2.5 V. The bridge is adjusted to zero voltage output before load is applied. Find the output of the bridge with load applied.arrow_forwardA mild steel specimen with an original length of 300 mm long is acted on with a tensile stress of 500 MPa. If the deformation is entirely elastic, compute the resultant elongation? The modulus of elasticity of mild steel is 200 GPa.arrow_forwardThe assembly is composed of a steel shell and an aluminum core that has been welded to a rigid plate. The gap between the plate and the aluminum is initially 1- mm. If the assembly's temperature is reduced by 180°C, determine (a) the final axial stresses in each material and (b) the deflection of the rigid bar. To support your response, draw a deformation diagram with appropriate labels. Use the following properties: Aluminum core Steel shell Diameters (mm) d = 15 mm do = 30 mm d₁ = 20 mm E (GPa) 70 200 2 m a (/°C) 22 x 10-6 12 x 10-6arrow_forward
- A mild steel bar has a gauge length of 80 mm and the total elongation is 0.08 mm, find the strain produced in it.arrow_forwardA cylindrical specimen of brass that has a diameter of 20 mm, a tensile modulus of 110 GPa, and a Poisson's ratio of 0.35 is pulled in tension with force of 40,000 N. If the deformation is totally elastic, what is the strain experienced by the specimen? O 0.00463 O 0.00116 O 0.0029 O 0.01350arrow_forwardAn AISI 1040 hot-rolled steel [E = 207 GPa; α = 11.3×10–6/°C] bar is held between two rigid supports. The bar is stress free at a temperature of 30°C. The bar is then heated uniformly. If the yield strength of the steel is 429 MPa, determine the temperature at which yield first occurs.arrow_forward
- d) No increase Which of the following is not a property of steel materials? C a) Homogeneous and isotropic b) Linearly elastic stress-strain behavior c) Recyclable d) Fire-resistantarrow_forwardQuestion isarrow_forwardFind the maximum force (kN) that a 2.5 mm thick and 50 mm wide nickel strip, having a yield strength of 310 Mpa and a tensile strength of 430 Mpa, can withstand with no plastic deformation. Round off your answer to the ones place.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning