Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.21PP
A system is being designed to carry
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Read the question carefully and give me right solution according to the question.
8. A pumped fluid distribution system is being designed to deliver 400 gal/min of water to a
cooling system in a power generation plant. Use the figure below to make an initial selection
of Schedule 40 pipe sizes for the suction and discharge lines for the system. Also, solve for
the actual average velocity of flow for each pipe.
DN (mm) NPS (in)
250
200
150 -
125 -
Suction lines
100 -
90 -
3
65 -
2
50
Discharge lines
40
32E
25 E
15 20
200
400
600 800
1000
2000
4000
6000 8000
10000
10
100
Volume Flow Rate, Q (gal/min)
6 8 10
++++
15 20 25 30 40
+++++++++ ++++++++++++
60
80 100
150 200
300 400 500600 800 1000 1200 2000
Volume Flow Rate, Q (m/h)
In Applied fluid mechanic, chapter 8 problem 8.21, can someone explain to me how to solve step by step? The question is A system is being designed to carry 500 gal/min of ethylene glycol at 77 F at a maximum velocity of 10 ft/s. Specify the smallest standard Schedule 40 steel pipe to meet this condition. Then for the selected pipe compute the Reynolds number for flow.
Chapter 8 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 8 - A 4-in-ductile iron pipe carries 0.20ft3/s of...Ch. 8 - Calculate the minimum velocity of flow in ft/s of...Ch. 8 - Calculate the maximum volume flow rate of fuel oil...Ch. 8 - Calculate the Reynolds number for the flow of each...Ch. 8 - Determine the smallest metric hydraulic copper...Ch. 8 - In an existing installation, SAE 10 oil (sg = 0.89...Ch. 8 - From the data in Appendix C, we can see that...Ch. 8 - Compute the Reynolds number for the flow of 325...Ch. 8 - Benzene (sg = 0.86 ) at 60c C is flowing at 25...Ch. 8 - Hot water at 80 C is flowing to a dishwasher at a...
Ch. 8 - A major water main is an 18 -in ductile iron pipe....Ch. 8 - ]8.12 An engine crankcase contains SAE 10 motor...Ch. 8 - Repeat Problem 8.12 for an oil temperature of 160...Ch. 8 - At approximately what volume flow rate will propyl...Ch. 8 - SAE 30 oil (sg = 0.89 ) is flowing at 45 L/min...Ch. 8 - Repeat Problem 8.15 for an oil temperature of 160...Ch. 8 - Repeat Problem 8.15, except the tube is 50 mm...Ch. 8 - Repeat Problem 8.17 for an oil temperature of 0 C.Ch. 8 - The lubrication system for a punch press delivers...Ch. 8 - After the press has run for some time, the...Ch. 8 - A system is being designed to carry 500 gal/min of...Ch. 8 - The range of Reynolds numbers between 2000 and...Ch. 8 - The water line described in Problem 8.22was a cold...Ch. 8 - In a dairy, milk at 100 F is reported to have a...Ch. 8 - In a soft-drink bottling plant, the concentrated...Ch. 8 - ]8.26 A certain jet fuel has a kinematic viscosity...Ch. 8 - Crude oil is flowing vertically downward through...Ch. 8 - Water at 75 C is flowing in a standard hydraulic...Ch. 8 - Fuel oil is flowing in a 4 -in Schedule 40 steel...Ch. 8 - A 3-in Schedule 40 steel pipe is 5000 ft long and...Ch. 8 - Benzene at 60 C is flowing in a DN 25 Schedule 80...Ch. 8 - As a test to determine the effective wall...Ch. 8 - Water at F flows from a storage tank through ft...Ch. 8 - A water main is an 18 -in-diameter concrete...Ch. 8 - Figure 8.12shows a portion of a fire protection...Ch. 8 - A submersible deep-well pump delivers 745 gal/h of...Ch. 8 - On a farm, water at 60 F is delivered from a...Ch. 8 - Figure 8.15 shows a system for delivering lawn...Ch. 8 - A pipeline transporting crude oil (sg = 0.93 ) at...Ch. 8 - For the pipeline described in Problem 8.39,...Ch. 8 - Water at 10 C flows at the rate of 900 L/min from...Ch. 8 - For the system shown in Fig. 8.17, compute the...Ch. 8 - Fuel oil (sg = 0.94 ) is being delivered to a...Ch. 8 - Figure 8.18 shows a system used to spray polluted...Ch. 8 - In a chemical processing system, the flow of...Ch. 8 - Water at 60 F is being pumped from a stream to a...Ch. 8 - For the pump described in Problem 8.46, if the...Ch. 8 - Gasoline at 50 F flows from point A to point B...Ch. 8 - Figure 8.20 shows a pump recirculating 300 gal/min...Ch. 8 - Linseed oil at 25 C flows at 3.65 in a standard...Ch. 8 - Glycerin at 25 C flows through a straight...Ch. 8 - Water at 75 C flows in a standard hydraulic copper...Ch. 8 - Benzene (sg = 0.88 ) at 60 C, flows in a DN 25...Ch. 8 - Water at 80 F flows in a 6 -in coated ductile iron...Ch. 8 - Water at 50 F flows at 15.0 ft3/s in a concrete...Ch. 8 - Water at 60 F flows at 1500 gal/min in a 10 -in...Ch. 8 - ]8.57 A liquid fertilizer solution (sg = 1.10 )...Ch. 8 - Crude oil (sg = 0.93 ) at 100 C flows at a rate of...Ch. 8 - Water at 65 C flows in a DN 40 Schedule 40 steel...Ch. 8 - Propyl alcohol flows in a standard hydraulic...Ch. 8 - ]3.61 Water at 70 F flows in a 12 -in-diameter...Ch. 8 - Heavy fuel oil at 77 F flows in a 6 -in Schedule...Ch. 8 - Water flows at a rate of 1.50ft3/s through 550 ft...Ch. 8 - Compute the energy loss as water flows in a...Ch. 8 - ]8.65 A water main is an 18 -in-diameter concrete...Ch. 8 - A fire protection system includes 1500 ft of 10...Ch. 8 - ]8.67 A standard hydraulic copper tube, 120 mm...Ch. 8 - Compute the energy loss as 2.0ft3/s of water flows...Ch. 8 - It is desired to flow 2.0ft3/s of water through...Ch. 8 - Specify a suitable size of new, clean Schedule 40...Ch. 8 - For the pipe selected in Problem 8.70, compute the...Ch. 8 - Compare the head loss that would result from the...Ch. 8 - In Problem 6.107, a theoretical flow rate of water...Ch. 8 - A pipeline is needed to transport medium fuel oil...Ch. 8 - Medium fuel oil at 25 C is to be pumped at a flow...Ch. 8 - A tremendous amount of study has gone into the...Ch. 8 - In a given installation, it is determined that the...Ch. 8 - "Laminar" fountains have become quite popular due...Ch. 8 - Use PIPE-FLO to model a straight horizontal run of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Each of the two circular pipes carries water at 65 °C flows at a Reynolds Number of 3.8× 10^4. Compute the total flow rate of water. If benzene (s.g.=0.8) is flowing around the two pipes at 25 °C with the same Reynolds number, what would be the flow rate of benzene?arrow_forwardSolve it with ID number = 250arrow_forwardPlease compute the Reynolds number of an oil (0.8 specific gravity, 0.8 cp viscosity) flowing in a pipe of 1- inch diameter at a velocity of 6 ft/s. Is this flow laminar or turbulent?arrow_forward
- Sulfuric acid with a specific gravity of 1.98 and viscosity of 26.7 cP is flowing in a 35 mm diameter pipe. If the acid flow rate is 1000 L/min, determine the pressure drop due to friction for a 100 yards length of smooth pipe? Compute the headloss due to friction for an 80-mm diameter steel pipe of the same length.arrow_forwardSolve step by step please Calculate the coefficient of resistance K for the ball-type check valve placed in a 2-in. Schedule 40 steel pipe if water at 100 ° F is flowing with a velocity of 10ft / s.arrow_forwardB1. A water with viscosity 11.4x10-3 poise is flowing through a pipe of diameter 300 mm at the rate of 500 litres per sec. Find the Reynold's Number & the head lost due to friction in the pipe of length 1 km. (Enter only the values by referring the unit given. Also upload the hand written answers in the link provided) The velocity of flow of water (in m/s) is The value of Reynold's Number is The frictional loss in the pipe (in m) isarrow_forward
- Solve the following problem. View image. Give complete and detailed solutions. Given: Asked: Solution: Please write legibly.arrow_forwardA horizontal 150 mm diameter pipe gradually reduces its section to 55 diameter, subsequently enlarging into 150 mm section. The pressure in the 150-mm pipe at a point just before entering the reducing section is 147 kPa and in the 55 mm section at the end of the reducer, the pressure is 79 kPa. If 657 mm of head is lost between the points where the pressure are known compute the rate of flow in L/s of water through the pipe.arrow_forwardCalculate the Flow Rate of water at 5°C through the system below. Q = Flow 3.4 m 700 kPa 30 mm diameter DN 65 mm Schedule 40 Pipearrow_forward
- 8.) A liquid having a sp.gr. of 20 is flowing in a 50 mm diameter pipe. The total head at a given point was found to be 17.5 Joule per Newton. The elevation of the pipe above the datum is 3 m and the pressure in the pipe is 65.6 kPa. Compute the velocity of flow and the horsepower in the stream at that point. Subject: Fluid Mechanic Lesson: Relative Equilibrium of Liquids Fundamentals of Fluid Flowarrow_forwardShow complete solution. Units must be included in all calculations. All numerical values should be rounded off to the nearestthousandths. 3.At section 1 of a pipe system carrying water the velocity is 3.0 fps and the diameter is 2.0 ft. At section 2 thediameter is 3.0 ft. Find the discharge and velocity at section 2.arrow_forwardNumber 3 question Complete solution and correct units pls. Draw the figures if necessaryarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY