Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.16PP
Repeat Problem 8.15 for an oil temperature of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Give the isometric configuration of the typical piping system of a pump installation using standard
symbols for required valves and fittings. Draw according to valid practice and label the parts.
Specify the pump type that would be used for the following conditions: N = 675
rpm; Q = 20 000 gpm; H = 50 ft; and n; = 1 stage.
Bernoullis equation assumes
a. Fluid is compressible
b. Flow is unsteady
c. No friction in the control volume
d. Fluid is a gas
Chapter 8 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 8 - A 4-in-ductile iron pipe carries 0.20ft3/s of...Ch. 8 - Calculate the minimum velocity of flow in ft/s of...Ch. 8 - Calculate the maximum volume flow rate of fuel oil...Ch. 8 - Calculate the Reynolds number for the flow of each...Ch. 8 - Determine the smallest metric hydraulic copper...Ch. 8 - In an existing installation, SAE 10 oil (sg = 0.89...Ch. 8 - From the data in Appendix C, we can see that...Ch. 8 - Compute the Reynolds number for the flow of 325...Ch. 8 - Benzene (sg = 0.86 ) at 60c C is flowing at 25...Ch. 8 - Hot water at 80 C is flowing to a dishwasher at a...
Ch. 8 - A major water main is an 18 -in ductile iron pipe....Ch. 8 - ]8.12 An engine crankcase contains SAE 10 motor...Ch. 8 - Repeat Problem 8.12 for an oil temperature of 160...Ch. 8 - At approximately what volume flow rate will propyl...Ch. 8 - SAE 30 oil (sg = 0.89 ) is flowing at 45 L/min...Ch. 8 - Repeat Problem 8.15 for an oil temperature of 160...Ch. 8 - Repeat Problem 8.15, except the tube is 50 mm...Ch. 8 - Repeat Problem 8.17 for an oil temperature of 0 C.Ch. 8 - The lubrication system for a punch press delivers...Ch. 8 - After the press has run for some time, the...Ch. 8 - A system is being designed to carry 500 gal/min of...Ch. 8 - The range of Reynolds numbers between 2000 and...Ch. 8 - The water line described in Problem 8.22was a cold...Ch. 8 - In a dairy, milk at 100 F is reported to have a...Ch. 8 - In a soft-drink bottling plant, the concentrated...Ch. 8 - ]8.26 A certain jet fuel has a kinematic viscosity...Ch. 8 - Crude oil is flowing vertically downward through...Ch. 8 - Water at 75 C is flowing in a standard hydraulic...Ch. 8 - Fuel oil is flowing in a 4 -in Schedule 40 steel...Ch. 8 - A 3-in Schedule 40 steel pipe is 5000 ft long and...Ch. 8 - Benzene at 60 C is flowing in a DN 25 Schedule 80...Ch. 8 - As a test to determine the effective wall...Ch. 8 - Water at F flows from a storage tank through ft...Ch. 8 - A water main is an 18 -in-diameter concrete...Ch. 8 - Figure 8.12shows a portion of a fire protection...Ch. 8 - A submersible deep-well pump delivers 745 gal/h of...Ch. 8 - On a farm, water at 60 F is delivered from a...Ch. 8 - Figure 8.15 shows a system for delivering lawn...Ch. 8 - A pipeline transporting crude oil (sg = 0.93 ) at...Ch. 8 - For the pipeline described in Problem 8.39,...Ch. 8 - Water at 10 C flows at the rate of 900 L/min from...Ch. 8 - For the system shown in Fig. 8.17, compute the...Ch. 8 - Fuel oil (sg = 0.94 ) is being delivered to a...Ch. 8 - Figure 8.18 shows a system used to spray polluted...Ch. 8 - In a chemical processing system, the flow of...Ch. 8 - Water at 60 F is being pumped from a stream to a...Ch. 8 - For the pump described in Problem 8.46, if the...Ch. 8 - Gasoline at 50 F flows from point A to point B...Ch. 8 - Figure 8.20 shows a pump recirculating 300 gal/min...Ch. 8 - Linseed oil at 25 C flows at 3.65 in a standard...Ch. 8 - Glycerin at 25 C flows through a straight...Ch. 8 - Water at 75 C flows in a standard hydraulic copper...Ch. 8 - Benzene (sg = 0.88 ) at 60 C, flows in a DN 25...Ch. 8 - Water at 80 F flows in a 6 -in coated ductile iron...Ch. 8 - Water at 50 F flows at 15.0 ft3/s in a concrete...Ch. 8 - Water at 60 F flows at 1500 gal/min in a 10 -in...Ch. 8 - ]8.57 A liquid fertilizer solution (sg = 1.10 )...Ch. 8 - Crude oil (sg = 0.93 ) at 100 C flows at a rate of...Ch. 8 - Water at 65 C flows in a DN 40 Schedule 40 steel...Ch. 8 - Propyl alcohol flows in a standard hydraulic...Ch. 8 - ]3.61 Water at 70 F flows in a 12 -in-diameter...Ch. 8 - Heavy fuel oil at 77 F flows in a 6 -in Schedule...Ch. 8 - Water flows at a rate of 1.50ft3/s through 550 ft...Ch. 8 - Compute the energy loss as water flows in a...Ch. 8 - ]8.65 A water main is an 18 -in-diameter concrete...Ch. 8 - A fire protection system includes 1500 ft of 10...Ch. 8 - ]8.67 A standard hydraulic copper tube, 120 mm...Ch. 8 - Compute the energy loss as 2.0ft3/s of water flows...Ch. 8 - It is desired to flow 2.0ft3/s of water through...Ch. 8 - Specify a suitable size of new, clean Schedule 40...Ch. 8 - For the pipe selected in Problem 8.70, compute the...Ch. 8 - Compare the head loss that would result from the...Ch. 8 - In Problem 6.107, a theoretical flow rate of water...Ch. 8 - A pipeline is needed to transport medium fuel oil...Ch. 8 - Medium fuel oil at 25 C is to be pumped at a flow...Ch. 8 - A tremendous amount of study has gone into the...Ch. 8 - In a given installation, it is determined that the...Ch. 8 - "Laminar" fountains have become quite popular due...Ch. 8 - Use PIPE-FLO to model a straight horizontal run of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q: A multi disc clutch is used to transmit to 10 kW power at 900 rpm. If the external diameter of friction lining is 1.25 times the internal diameter, find the required dimensions of the friction lining and the axial force exerted by the oil chamber pressurized to engaged the disks a with disks b. The pressure between disks is limited to 0.085 N/mm?. Assume average service condition. The coefficient of friction may be taken as 0.3. Disks a Disks b Seals Oil chamber (pressurized to engage clutch) Piston Bushing Oil passage Output Key Key Input Oil passage Page 1 of 1arrow_forwardBOOK: FLUID POWER, 3e, JAMES A. SULLIVAN PROBLEM: 2 - 11arrow_forwardFigure 8.18 shows a system used to spray polluted water into the air to increase the water's oxygen content and to cause volatile solvents in the water to vaporize. The pressure at point B just ahead of the nozzle must be 25.0 psig for proper nozzle performance. The pressure at point A (the pump inlet) is -3.50 psig. The volume flow rate is 0.50 ft/s. The dynamic viscosity of the fluid is 4.0 x 105 lbs/ft². The specific gravity of the fluid is 1.026. Compute the power delivered by the pump to the fluid, considering friction energy loss in the discharge line.arrow_forward
- Water at 5°C is to be pumped from the river to the bottom of a water tower. The pump is 5 m above the river (dimension "a" on the diagram below) and is supplied by a 6.00 inch schedule 40 pipe. The tank is 19.5 m above the pump (dimension "b" on the diagram below) and is supplied by a 4 inch schedule 40 pipe. The water level in the tank is 4.3 m above the inlet (dimension "c" on the diagram below). The pump delivers 0.021 m/s. Losses are estimated to be 1.2 m between the river and the pump, and 4.2 m between the pump and the tank. Discharge line Suction line Pump River a) Calculate the losses in the suction line in kPa, based on the given head loss in m. kPa b) Calculate velocity in the suction line in m/s. m/s c) What is the pressure at the inlet to the pump in kPa? kPaarrow_forwardAnswer pleasearrow_forwardDetermine the maximum suction elevation in feet below pump centerlinearrow_forward
- Sometimes pumps do not perform as tested when they are installed in a pipeline. Name and describe four (4) ways in which the pump parameters can be changed in order to meet requirements.arrow_forward8. In the regenerative circuit shown below, the pump's flow rate is 10 gpm. If the piston diameter is 7 in and the rod diameter is 5 in (not a 2:1 cylinder), calculate the extension speed in in/min. Also calculate the oil flow rate at points A and B in gpm. (recall 1 gal = 231 in') PF The diagram above does not show a working regenerative circuit. What must be added in order for the circuit to be practical and why?arrow_forwardHomework. Design a journal bearing for a centrifugal pump from the following data: Assume the diameter of the journal d as 100 mm and take 1 = 150 mm ; Load on the journal = 10 000 N; Speed of the journal = 1000 r.p.m.; Type of oil is SAE 20, at 60°C; Ambient temperature of oil = 15.5°C ; Maximum bearing pressure for the pump = 1.5 N/mm². Calculate also mass of the lubricating oil required for artificial cooling, if rise of temperature of oil be limited to 20°C. Heat dissipation coefficient = 1200 W/m?/C, Specific heat of oil (S) = 1800 J/kg/°C. d = 100 mm; l = 150, W = 10 000 N ; N = 1000 r.p.m. ; to = 55°C ; Z = 0.020 kg/m-s ; ta W/m?/C; S= 1800 J/kg/°C %3D 15.5°C ; p 1.5 N/mm? ; t = 20°C ; C = 1200arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license