Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 69EAP
A small bead slides around a horizontal circle at height y inside the cone shown in FIGURE CP8.69. Find an expression for the bead’s speed in terms of a, h, y, and g.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A Ferris wheel has a radius of 42.4 feet. The bottom of the Ferris wheel sits 0.8 feet above
the ground. You board the Ferris wheel at the 6 o'clock position and rotate counter-
clockwise.
a. Define a function, f that gives your height above the ground (in feet) in terms of the
angle of rotation (measured in radians) you have swept out from the 6 o'clock
position, a
f(a)-42.4sin(a)+43.2
Preview
b. Define a function, g, that gives your height above the ground (in feet) in terms of the
number of feet you have rotated counter-clockwise from the 6 o'clock position, s.
g(s)=43.2+42.2sin(s/42.4)
Preview
A skateboarder is attempting to skate through a vertical loop of radius r = 7.5 m. He skates down a ramp and is launched into the loop by an inclined plane that makes an angle of θ = 45 degrees with respect to the horizontal.
a. If the skateboarder begins from rest how high does the ramp he starts from have to be so that he does not fall at the top of the loop? Give your answer in meters.
A roller coaster car rolls down a frictionless track, reaching speed ν at the bottom.a. If you want the car to go twice as fast at the bottom, by what factor must you increase the height of the track?b. Does your answer to part a depend on whether the track is straight or not? Explain.
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- H6. A skier/snowboarder starts at rest at the top of a snowy (friction-free) hill with height h1. After the bottom of this hill there is a small “jump” hill. The top of the jump has height h2 and a curvature of radius R. What is the minimum height of the starting hill, h1min, so that the skier/snowboarder jumps or “catches air” at the top of hill 2? Solve for h1min in terms of h2, R, and g. Hint: if the skier/snowboarder jumps, he/she/they loose contact with the snowy ground.arrow_forwardA 750 g ball swings in a vertical circle at the end of a 1.5 m long string. When the ball is at the bottom of the circle, the tension in the string is 40 N. What is the speed of the ball at that point?arrow_forwardSince March 2006, NASAs Mars Reconnaissance Orbiter (MRO) has been in a circular orbit at an altitude of 316 km around Mars (Fig. P6.81). The acceleration due to gravity on the surface of the planet Mars is 0.376g, and its radius is 3.40 103 km. Assume the acceleration due to gravity at the satellite is the same as on the planets surface. a. What is MROs orbital speed? B. What is the period of the spacecrafts orbit? FIGURE P6.81arrow_forward
- Often, we model the Moon as a particle in a circular orbit around the Earth. The same side of the Moon always faces the Earth. Sketch the Moon in its orbit. Explain in what way the particle model is insufficient.arrow_forwardConsider the Earth and the Moon as a two-particle system. a. Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon.) b. Plot the scalar component of g as a function of distance from the center of the Earth.arrow_forwardA cannon fires a 10.0 kg cannonball horizontally from the top of a 50 m high cliff with an initial speed of 80.0 m/s. The origin (0,0) is at the base of the cliff as shown in the figure, not at the starting position of the cannonball. Assume no air resistance, ball rotation, etc. Only gravity is acting on the ball while it is in flight. a. Fill in the following table. If there is/are unknown quantity/ies put a question mark in those boxes. Don't forget units! Yi xf yf Vxi Vyi Vxf Vyf Ax ay (0,0) b. Using the information in the table, determine how long the cannonball is in the air.arrow_forward
- A plane with a wingspan of d=25.6m loses control in flight and begins to spiral in a circle around the cockpit while in a vertical dive. It completes one rotation every T=4.72s a. Write an expression for the speed of the tips of the wings relative to the central axis of the plane b. What is the speed in meters per second? c. What is the centripetal force, in newtons, experienced by a pilot with a mass of 100 kg who is 1.0 m above the axis of rotationarrow_forwardA 0.1 kg ball is attached to a string and whirled around in a circle overhead. The string breaks if the force on it exceeds 60 N. What is the maximum speed the ball can have when the radius of the circle is 1 m?arrow_forwardPlease explain and give the final answer for this problem. I keep getting wrong answers after calculations.arrow_forward
- Jeric, a professional rooftop futbol player, kicked a 4.0 kg ball off a rooftop that is 50 m off the ground, at 10 m/ s oriented 30° degree above his horizon. His pal, Joshua, caught the ball from a window at a distant building that is 25 m off the ground. Joshua then released the ball from this height and let the ball fall to the ground. A. What is the speed of the ball just before it reaches Joshua? B. What is the speed of the ball just before it reaches the ground?arrow_forwardA space station is in a circular orbit about the earth at an altitude h of 5.0 x 10° km. If station makes one revolution every 95 min. A. What is the orbital speed? B. What is the centripetal accelerationarrow_forwardJeric, a professional rooftop futbol player, kicked a 4.0 kg ball off a rooftop that is 50 m off the ground, at 10 m/s oriented 30° degree above his horizon. His pal, Joshua, caught the ball from a window at a distant building that is 25 m off the ground. Joshua then released the ball from this heightand let the ball fall to the ground. A. What is the speed of the ball just before it reaches Joshua?B. What is the speed of the ball just before it reaches the ground?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY