Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 70EAP
A 500 g steel block rotates on a steel table while attached to a 1.2-m-long hollow tube as shown in FIGURE CP8.70. Compressed air fed through the tube and ejected from a nozzle on the back of the block exerts a thrust force of 4.0 N perpendicular to the tube.
The maximum tension the tube can withstand without breaking is 50 N. If the block starts from rest, how many revolutions does it make before the tube breaks?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A cable lifting an elevator (600-kg) is wrapped around a
1.0-m diameter cylinder (20-kg) that is turned by the
elevator's motor. The elevator is moving upward at a
speed of 2.0-m/s then slows to a stop.
(Note: I(cylinder)= ½ M R?)
a. What is the angular acceleration (a) of the
cylinder?
b. What are the initial and final angular
velocities (w) of the rotor.
c. What angle (Dq) does the cylinder cover
while stopping?
d. How long does it take to stop the elevator?
A 500 g steel block rotates on a steel table while attached to a 2.0 m long massless rod. Compressed air fed through the rod is ejected from a nozzle on the back of the block exerting a thrust force of 3.4 N. The nozzle is 70 degrees from the radial line.
What is the block's angular velocity after 10 rev?
What is the tension in the rod after 10 rev?
A bicycle with 0.80-m-diameter tires is coasting on a level road at 5.6 m/s. A small blue dot has been painted on the tread of the rear tire.a. What is the angular speed of the tires?b. What is the speed of the blue dot when it is 0.80 m above the road?c. What is the speed of the blue dot when it is 0.40 m above the road?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- BIO The arm in Figure P10.35 weighs 41.5 N. The gravitational force on the arm acts through point A. Determine the magnitudes of the tension force F1 in the deltoid muscle and the force Fs exerted by the shoulder on the humerus (upper-arm bone) to hold the arm in the position shown. Figure P10.35arrow_forwardThe chewing muscle, the masseter, is one of the stron- gest in the human body. It is attached to the mandible (lower jawbone) as shown in Figure P8.33a. The jawbone is pivoted about a socket just in front of the auditory canal. The forces acting on the jawbone are equivalent to those acting on the curved bar in Figure P8.33b. F. is the force exerted by the food being chewed against the jawbone, T is the force of ten- sion in the masseter, and R is the force exerted by the socket on the mandible. Find T and R for a person who bites down on a piece of steak with a force of 50.0 N. 3.50 cm – 7.50 cm Masseter Mandible Б a Figure P8.33arrow_forwardA 0.500-kg ball that is tied to the end of a 1.50-m light cord is revolved in a horizontal plane with the cord making a 0 angle with the vertical. If the tangential speed of the ball is 4.00 m/s, what angle does the cord make with the vertical? e.arrow_forward
- Homework Q6.arrow_forwardConsider the 13.0 kg motorcycle wheel shown in the figure. Assume it to be approximately an annular ring with an inner radius of R1 = 0.280 m and an outer radius of R2 = 0.420 m. The motorcycle is on its center stand, so that the wheel can spin freely. a. If the drive chain exerts a force of 1800 N at a radius of 5.00 cm, what is the angular acceleration (in rad/s2) of the wheel? b. What is the tangential acceleration (in m/s2) of a point on the outer edge of the tire? c. How long (in s), starting from rest, does it take to reach an angular velocity of 80.0 rad/s?arrow_forwardThe 20-cm-diameter disk shown can rotate on an axle through its center. What is the net torque about the axle?arrow_forward
- q21arrow_forwardHint Three children are riding on the edge of a merry-go-round that has a mass of 105 kg and a radius of 1.60 m. The merry-go-round is spinning at 16.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the merry-go-round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the merry-go-round can be treated as a solid disk and the children as point masses. Question Credit: OpenStax College Physics final angular velocity: rpm privacy policy terms of use contact us help about us careersarrow_forward5. A block m= 5kg sits on a horizontal surface with coefficient of u = 0.2 between the block and the surface. A string runs from this block over a cylinder wheel of radius R = 10 cm and mass m, =2 kg and is attached to a hanging 7 kg friction mass. a. Find the acceleration of the masses, the angular acceleration of the wheel, and the tension in the string on each side. b. Use acceleration to find the velocity after block M moved down by h= 0.5m Marrow_forward
- Q2. A thin square wooden slab was freely rotating on the frictionless surface (like an ice) with angular velocity i. The length of one side of the slab was L. The thickness of the slab was h. The density of the slab is p. Answer the following questions. ht Wi (a) What is the moment of inertia of this rotating slab? (b) What is the kinetic energy of this rotating slab?arrow_forwardc) What would the angular speed be in rad/sec? in rpm? 4.(8.23), A Ferris wheel has a radius of 15 m. The time for 1 revolution is 25 sec. A passenger has a mass of 60 kg. a) Draw a force diagram for the passenger at the top of the ride (weight, normal force and net force). b) What is the normal force on the passenger at the top? c) Draw a force diagram for the passenger at the bottom of the ride (weight, normal force and net force). d) What is the normal force on the passenger at the bottom?arrow_forwardA 0.57 kg steel block rotates on a steel table (μk = 0.6) while attached to a 2.6 m long massless rod. Compressed air fed through the rod is ejected from a nozzle on the back of the block, exerting a thrust force of 3.4 N. The nozzle is 70° from the radial line. The block starts from rest. a. What is the block’s angular velocity after 10 revolutions? rad.s-1 b. What is the tension in the rod after 10 revolutions? Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License