Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 8, Problem 45EAP
Two wires are tied to the 2.0 kg sphere shown in FIGURE P8.45. The sphere revolves in a horizontal circle at constant speed.
a. For what speed is the tension the same in both wires?
b. What is the tension?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A conical pendulum is formed by attaching a ball of mass m to a string of length L, then allowing the ball to move in a horizontal circle of radius r.
a. Draw a free-body diagram for the ball. b.
Find an expression for the tension Tin the string in terms of m and 0.
C. Find an expression for the ball's angular speed w in terms of r and 0.
D. What are the tension and angular speed (in rpm) for a 500 g ball swinging in a 20-cm-radius circle at the end of a 1.0-m-long string?
Point
A unicorn is standing on a rotating platform, so that it can be admired from every angle. The platform is 5 m in radius and rotates every 8 seconds (otherwise known as 1/8 of a rotation per second).
A. What velocity will the unicorn have if it is on the edge of the platform?
B. What coefficient of friction must the unicorn's hooves have to keep him from slipping over the edge?
A 200 g block on a 52.0 cm -long string swings in a circle on a horizontal, frictionless table at 95.0 rpm
a.)What is the speed of the block?
b.What is the tension in the string?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A tesla starts from rest on an unbanked circular track of radius 100m and speeds up at a steady rate of 0.100m/s^2. The coefficient of static friction between the tires and the road is 0.642. a. How much time passes before the radial acceleration of the car is 10 times its tangential acceleration? b. What is the maximum safe speed (in km/h) before the tesla slips off the track c. How many revolutions around the track can be safely completed?arrow_forwardA child ties a 0.3 kg stone to one end of a string. Holding the other end, the child whirls the stone in a vertical circle of radius 0.9 m. a. At the top of the circle, the speed of the stone is 8 m/s. What is the tension in the string? Draw the free body diagram. b. At the bottom of the circle, the speed of the stone is 9 m/s. What is the tension in the string? Draw the free body diagram. c. The string can withstand a maximum tension of 40 N before it breaks. The child whirls the stone faster and faster. At what point on the circle does the string break? Show this point on a circle, then draw the trajectory of the stone after breaking. Make sure you clearly show the direction of the stone immediately after the string breaks. d. What is the speed of the stone as the string breaks?arrow_forwardA typical laboratory centrifuge rotates at 4000 rpm. Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations.a. What is the acceleration at the end of a test tube that is 10 cm from the axis of rotation?b. For comparison, what is the magnitude of the acceleration a test tube would experience if stopped in a 1.0-ms-long encounter with a hard floor after falling from a height of 1.0 m?arrow_forward
- At the Dapto Show a ride called the Gravitron (aka the Vomitron), see the patrons enter a cylindrical chamber which rotates rapidly, causing them to be pinned to the vertical walls as the floor drops away. This particular Gravitron ride has a radius of 5.00 m and rotates with a period of 2.50 s. Kylie has a mass of 60.0 kg and is on the ride. a. Calculate the speed of Kylie as she revolves on the ride. b. What is the magnitude of her centripetal acceleration? Calculate the magnitude of the normal force (Fn) that acts on Kylie from the wall of the Gravitron. С. Fo 5881 The rate of the ride is increased so that Kylie completes six revolutions every 10 s. What is the frequency of Kylie's motion now? d. bec. secsarrow_forwardA manufacturer of CD-ROM drives claims that the player can spin the disc as frequently as 1200 revolutions per minute. a. If spinning at this rate, what is the speed of the outer row of data on the disc; this row is located 5.6 cm from the center of the disc?b. What is the acceleration of the outer row of data?arrow_forwardA racecar is driven on a horizontal circular track at a constant speed of 20.0 m/s. The radius of the track is 100.0 meters and the mass of the car is 800.0 kg. a. Does the racecar accelerate and if it does in what direction is the acceleration? EXPLAIN! b. What is the centripetal force on the racecar? c. What is the value of the static frictional force between the tires and the track? d. Explain what (and why) the driver of the racecar should do if it started to rain in order to keep driving in a circle. Make sure to explain what happens to the frictional force when it begins to rain and make sure to explain how the driver’s action changes the centripetal force on the racecar.arrow_forward
- P8. A 30kg child rides a circus train that performs vertical turns of radius 20 m every 22 sec. What is the resulting force when the child is at the top of the trajectory?arrow_forwardA 4.0 kg car is traveling around a vertical loop with a radius of 2 m. What is the normal force from the surface of the track when the car is at its highest point if it is moving with a speed of 5 m/s? A.40 N B.90 N C.50 N D.10 Narrow_forwardTurksat 5A Satellite is launched in a circular orbit 700 km above the earth’s surface. a. How long does it take the satellite to make one orbit b. What is the speed (km/s) of the Turksat 5A in this orbit?arrow_forward
- Two wires are tied to the 400 g sphere shown in the figure. The sphere revolves in a horizontal circle at a constant speed of 7.70 m/. What is the tension in the upper wire? What is the tension in the lower wire?arrow_forwardA couple of astronauts agree to rendezvous in space after hours. Their plan is to let gravity bring them together. One of them has a mass of 65.0 kg and the other a mass of 72.0 kg and they start from rest 20.0 m apart. a. Draw a free-body diagram of each astronaut, and use it to find his or her initial acceleration. As a rough approximation, we can model the astronauts as uniform spheres. b. If the astronauts' acceleration remained constant, how many days would they have to wait before reaching each other? Careful! They both have acceleration toward each other! c. Would their acceleration, in fact, remain constant? If not, would it increase or decrease? Why?arrow_forwardE8. A Ferris wheel at a carnival has a radius of 10 m and turns so that the speed of the riders is 8 m/s. a. What is the magnitude of the centripetal acceleration of the riders?b. What is the magnitude of the net force required to produce this centripetal acceleration for a rider with a mass of 60 kg?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License