Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 64AP
To determine
The speed of each block when the spring is again unstretched.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A block of mass m₁ = 22.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light,
frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 260 N/m
as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is
frictionless. The 22.0-kg block is pulled a distance h = 18.0 cm down the incline of angle 8 = 40.0° and released from rest.
Find the speed of each block when the spring is again unstretched.
Vm1 =
Vm2 =
m/s
m/s
A
m₁
m₂
PLEASE USE THE INFO IN 9 TO SOLVE 10. THANKS!
A cube, whose mass is 0.720 kg, is attached to a spring with a force constant of 110 N/m. The cube rests upon a frictionless, horizontal surface (shown in the figure below).
A cube labeled m is attached to the right end of a horizontal spring, and the left end of the spring is attached to a wall. The spring is stretched horizontally such that the cube is displaced by a distance A to the right of its equilibrium position.
The cube is pulled to the right a distance A = 0.140 m from its equilibrium position (the vertical dashed line) and held motionless. The cube is then released from rest.
(a)
At the instant of release, what is the magnitude of the spring force (in N) acting upon the cube?
N
(b)
At that very instant, what is the magnitude of the cube's acceleration (in m/s2)?
m/s2
(c)
In what direction does the acceleration vector point at the instant of release?
Away from the equilibrium position (i.e., to the right in the figure). Toward the equilibrium position (i.e., to…
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1OQCh. 8 - Two children stand on a platform at the top of a...Ch. 8 - Prob. 3OQCh. 8 - An athlete jumping vertically on a trampoline...Ch. 8 - Prob. 5OQCh. 8 - In a laboratory model of cars skidding to a stop,...
Ch. 8 - Prob. 7OQCh. 8 - Prob. 8OQCh. 8 - Prob. 9OQCh. 8 - One person drops a ball from the top of a building...Ch. 8 - Prob. 2CQCh. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - In the general conservation of energy equation,...Ch. 8 - Prob. 8CQCh. 8 - A block is connected to a spring that is suspended...Ch. 8 - Prob. 10CQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - Prob. 5PCh. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - A sled of mass m is given a kick on a frozen pond....Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - Prob. 15PCh. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 17PCh. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - Prob. 19PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 25PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - The electric motor of a model train accelerates...Ch. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Prob. 44APCh. 8 - Prob. 45APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Prob. 47APCh. 8 - Why is the following situation impossible? A...Ch. 8 - Prob. 49APCh. 8 - Prob. 50APCh. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 55APCh. 8 - Consider the popgun in Example 8.3. Suppose the...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - Prob. 58APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 60APCh. 8 - Prob. 61APCh. 8 - Prob. 62APCh. 8 - Prob. 63APCh. 8 - Prob. 64APCh. 8 - A block of mass 0.500 kg is pushed against a...Ch. 8 - Prob. 66APCh. 8 - Prob. 67APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 69APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 71APCh. 8 - Prob. 72APCh. 8 - Prob. 73APCh. 8 - Prob. 74APCh. 8 - Prob. 75APCh. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - Prob. 79CPCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 81CPCh. 8 - Prob. 82CPCh. 8 - Prob. 83CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 85CP
Knowledge Booster
Similar questions
- Review. Consider the system shown in Figure P10.21 with m1 = 20.0 kg, m2 = 12.5 kg, R = 0.200 m, and the mass of the pulley M = 5.00 kg. Object m2 is resting on the floor, and object m1 is 4.00 m above the floor when it is released from rest. The pulley axis is frictionless. The cord is light, does not stretch, and does not slip on the pulley. (a) Calculate the time interval required for m1 to hit the floor. (b) How would your answer change if the pulley were massless? Figure P10.21arrow_forwardThe puck in Figure P11.46 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) Figure P11.46arrow_forwardReview. This problem extends the reasoning of Problem 41 in Chapter 9. Two gliders are set in motion on an air track. Glider 1 has mass m1 = 0.240 kg and moves to the right with speed 0.740 m/s. It will have a rear-end collision with glider 2, of mass m2 = 0.360 kg, which initially moves to the right with speed 0.120 m/s. A light spring of force constant 45.0 N/m is attached to the back end of glider 2 as shown in Figure P9.41. When glider 1 touches the spring, superglue instantly and permanently makes it stick to its end of the spring. (a) Find the common speed the two gliders have when the spring is at maximum compression. (b) Find the maximum spring compression distance. The motion after the gliders become attached consists of a combination of (1) the constant-velocity motion of the center of mass of the two-glider system found in part (a) and (2) simple harmonic motion of the gliders relative to the center of mass. (c) Find the energy of the center-of-mass motion. (d) Find the energy of the oscillation.arrow_forward
- A cube, whose mass is 0.700 kg, is attached to a spring with a force constant of 110 N/m. The cube rests upon a frictionless, horizontal surface (shown in the figure below). A cube labeled m is attached to the right end of a horizontal spring, and the left end of the spring is attached to a wall. The spring is stretched horizontally such that the cube is displaced by a distance A to the right of its equilibrium position. The cube is pulled to the right a distance A = 0.110 m from its equilibrium position (the vertical dashed line) and held motionless. The cube is then released from rest. (a) At the instant of release, what is the magnitude of the spring force (in N) acting upon the cube? N (b) At that very instant, what is the magnitude of the cube's acceleration (in m/s2)? m/s2 (c) In what direction does the acceleration vector point at the instant of release?arrow_forwardA cube, whose mass is 0.700 kg, is attached to a spring with a force constant of 132 N/m. The cube rests upon a frictionless, horizontal surface (shown in the figure below). A cube labeled m is attached to the right end of a horizontal spring, and the left end of the spring is attached to a wall. The spring is stretched horizontally such that the cube is displaced by a distance A to the right of its equilibrium position. The cube is pulled to the right a distance A = 0.130 m from its equilibrium position (the vertical dashed line) and held motionless. The cube is then released from rest. (A) At the instant of release, what is the magnitude of the spring force (in N) acting upon the cube? (B) At that very instant, what is the magnitude of the cube's acceleration (in m/s2)? m/s2 (c) In what direction does the acceleration vector point at the instant of release?arrow_forwardTo run Slap-chop and use Sham-wow you need to be in shape. For a work out, the man in the figure uses a device consisting of four springs arranged as shown. Each spring has a spring constant of 71.5 N/m. The hands holding the unstretched device are 37.79 cm apart. If the person can extend the springs to 84.58 cm apart, what is the maximum lateral force exerted by each hand?arrow_forward
- A 70 gg mass is attached to one end of a 10-cm-long spring. The other end of the spring is connected to a frictionless pivot on a frictionless, horizontal surface. Spinning the mass around in a circle at 90 rpm causes the spring to stretch to a length of 12 cm. What is the value of the spring constant?arrow_forwardIf you are to add another box with a mass of 5kg, how far from the pivot point should you put for the system to be in equilibrium? * 0.9m 15kg 8kg 5kg 2.2m 1.8m 1.67 m 1.76 m 2.47 m 2.84 m Correct answer not foundarrow_forwardA uniform thread of linear mass density λ=2. 0 g/m passes through a fixed ideal pulley. At its ends, the thread is stacked into two heaps that do not interfere motion of the thread. A beetle of mass m=80 g tries to manage itself at a constant height on the thread by adjusting its speed relative to the threadarrow_forward
- In each figure below, a system consisting of two blocks that are tied together is attached to a spring. The systems are all at rest, and all of the springs are stretched by the same amount. The blocks on the horizontal surface are all identical, but the masses of the blocks on the inclined surfaces and the spring constants of the springs vary as shown in the figures. There may be friction between the blocks and the surfaces. A B C 4 kg k = 120 N/m 7kg k = 150 N/m 5 kg k = 120 N/m D E F k = 150 N/m 5 kg k = 180 N/m k = 150 N/m 4 kg 5 kg Rank these cases on the basis of the spring potential energy. _2. Greatest 1 3 4 5 Least OR, The spring potential energy is the same for all these systems, but it is not zero. OR, The spring potential energy is zero for all these systems. OR, We cannot determine the ranking for the spring potential energy. Please explain your reasoning.arrow_forwardTo run Slap-chop and use Sham-wow you need to be in shape. For a work out, the man in the figure uses a device consisting of four springs arranged as shown. Each spring has a spring constant of 75.5 N/m. The hands holding the unstretched device are 36.34 cm apart. If the person can extend the springs to 61.87 cm apart, what is the maximum lateral force exerted by each hand?arrow_forwardConsider the following figure. A strand has one end tied to a wall, extends across a small fixed pulley, and the other end is tied to a hanging object. M The total length of the strand is L = 9.00 m, the mass of the strand is m = 9.00 g, the mass of the hanging object is M = 7.00 kg, and the pulley is a fixed a distance d = 7.00 m from the walI. You pluck the strand between the wall and the pulley and it starts to vibrate. What is the fundamental frequency (in Hz) of its vibration? 19.40 How is the speed of the wave along the strand related to the tensions in and the linear mass density? How is the speed of the wave along the strand related to the wavelength and the frequency? See if you can combine these two relationships to determine the desired frequency. Hz Need Help? Read Itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning