Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 28P
(a)
To determine
The output mechanical power of the lift station.
(b)
To determine
The efficiency of the power motor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A lawnmower engine ejects 1.00 x 104 J each second while running with an efficiency of 0.200. Find the engine’s horsepower rating, using the conversion factor 1 hp = 746 W.
Water is pumped from a lake to a storage tank 25 m above at a rate of 70 L/s while consuming 22.4 kW of electric power. Disregarding any frictional losses in the pipes and any changes in kinetic energy, determine the overall efficiency of the pump–motor unit.
Flying with a speed of VV∞ = 120 m/s at an altitude of 2000 m, where the density is 1.007 kg/m3, the pilot
calculates the required power to be 61 kW
A) If the power plant is an ICE-propeller with shaft power of 320 kW at sea level, and a propeller efficiency
of 80 %, what are the maximum rates of climb at altitudes of 2000 m and 5000 m if the total aircraft
mass is 2000 kg?
B) Assuming the rate of climb varies linearly with altitude, find the minimum time taken to climb from 2000
m to 5000 m.
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1OQCh. 8 - Two children stand on a platform at the top of a...Ch. 8 - Prob. 3OQCh. 8 - An athlete jumping vertically on a trampoline...Ch. 8 - Prob. 5OQCh. 8 - In a laboratory model of cars skidding to a stop,...
Ch. 8 - Prob. 7OQCh. 8 - Prob. 8OQCh. 8 - Prob. 9OQCh. 8 - One person drops a ball from the top of a building...Ch. 8 - Prob. 2CQCh. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - In the general conservation of energy equation,...Ch. 8 - Prob. 8CQCh. 8 - A block is connected to a spring that is suspended...Ch. 8 - Prob. 10CQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - Prob. 5PCh. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - A sled of mass m is given a kick on a frozen pond....Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - Prob. 15PCh. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 17PCh. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - Prob. 19PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 25PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - The electric motor of a model train accelerates...Ch. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Prob. 44APCh. 8 - Prob. 45APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Prob. 47APCh. 8 - Why is the following situation impossible? A...Ch. 8 - Prob. 49APCh. 8 - Prob. 50APCh. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 55APCh. 8 - Consider the popgun in Example 8.3. Suppose the...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - Prob. 58APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 60APCh. 8 - Prob. 61APCh. 8 - Prob. 62APCh. 8 - Prob. 63APCh. 8 - Prob. 64APCh. 8 - A block of mass 0.500 kg is pushed against a...Ch. 8 - Prob. 66APCh. 8 - Prob. 67APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 69APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 71APCh. 8 - Prob. 72APCh. 8 - Prob. 73APCh. 8 - Prob. 74APCh. 8 - Prob. 75APCh. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - Prob. 79CPCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 81CPCh. 8 - Prob. 82CPCh. 8 - Prob. 83CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Water falls over a dam of height h with a mass flow rate of R, in units of kilograms per second. (a) Show that the power available from the water is P=Rgh where g is the free-fall acceleration. (b) Each hydroelectric unit at the Grand Coulee Dam takes in water at a rate of 8.50 105 kg/s from a height of 87.0 m. The power developed by the falling water is converted to electric power with an efficiency of 85.0%. How much electric power does each hydroelectric unit produce?arrow_forwardCoal is lifted out of a mine a vertical distance of 50 m by an engine that supplies 500 W to a conveyer belt. How much coal per minute can be brought to the surface? Ignore the effects of friction.arrow_forwardA hydro electric power station takes its water from a lake whose water level is 50m above the turbine. Assuming an overall efficiency of 40%, calculate the mass of water which must flow through the turbine each second to produce power output of 1MW. (g=10 m s-²).arrow_forward
- A spherical tank of diameter 4 m is half-full of water (weight density = 9800 N/m³). Setup the integral for the work done in pumping the content to a point 3 m from the top of the tank. (Hint: Put the bottom of the tank along the x-axis.) 9800л *(1-³ - 11y² + 28y) dy 0 9800л 7 S* (v³-7y² +12y) dy 0 9800л -S²(-y³ + 15y-4-72-³ + 1122) dy 0 4 9800л S (y3-9y² + 20y) dy 0arrow_forwardA spherical tank of diameter 6 m is full of water. Set-up the integral for the work done in pumping all the content to a point 1m from the top of the tank. 6 9800 T (7-y)(6y-y²)²dy 6 9800 T (7-y)√6y-y²dy 0 9800 T + √² (7-y)√6y-y²dy .6 9800 T (y³ 13y² +42y)dyarrow_forwardb) A human can generate power of about 80 W. If one person works to raise water for 4 hours every day, what is the approximate volume of water that can be pumped from a 5 meter deep well in a month, assuming 50% efficiency? c) The water is to be used to irrigate a field of wheat, which requires a total of 15 cm depth of water over a three-month growing season. Using the answer from (b), how much area can be irrigated to a depth of 5 cm each month? d) If the yield of wheat is 0.1 kg/m², and the energy equivalent of wheat is 7.5 MJ/kg, what is the total energy produced by the field of wheat over a season? e) Assuming a food consumption per person of 10 MJ per day, how many person-days of food is generated by this field over a year?arrow_forward
- A 13m high water tank has the shape of an inverted pyramid, with base b=7m, and is filled with water with a mass of 1000 kg/m 3 . Find the work performed in pumping all water to a point 5 m above the top of the tank.arrow_forwardA trough is 6 meters long, 3 meters wide, and 5 meters deep. The vertical cross- section of the trough parallel to an end is shaped like an isoceles triangle (with height 5 meters, and base, on top, of length 3 meters). The trough is full of water kg (density 1000- ). Find the amount of work in joules required to empty the trough m³ m by pumping the water over the top. (Note: Use g = 9.8- as the acceleration due to gravity.) s² Joulesarrow_forwardAce Industries has a 50 kW air compressor that operates at full-load (LF = 1), all day for 365 days per year. the motor for the air compressor cost €1400, the motor efficiency is 90%, and electricity costs €7.00/kW/month and €0.10/kWh, how much does it cost to operate the air compressor for one year?arrow_forward
- A trough is 5 meters long, 1.5 meters wide, and 1 meters deep. The vertical cross-section of the trough parallel to an end is shaped like an isoceles triangle (with height 1 meters, and base, on top, of length 1.5 meters). The kg trough is full of water (density 1000- ). Find the amount of work in m3 joules required to empty the trough by pumping the water over the top. (Note: Use g = 9.8 as the acceleration due to gravity.) s2 5m 1.5m 1marrow_forwardWhat is the efficiency of a subject on a treadmill who puts out work at the rate of 100 W while consuming oxygen at the rate of 2.00 L/min?arrow_forwardPlease answer in 30 min! I will upvote!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY