
Concept explainers
Draw the influence lines for the vertical reactions at supports A, B, C and the shear and bending moment at point E.

Explanation of Solution
Calculation:
Apply a 1 kN unit moving load at a distance of x from left end D.
Sketch the free body diagram of frame as shown in Figure 1.
Influence line for vertical reaction at supports C.
Refer Figure 1.
Find the equation of vertical reaction at supports C.
Apply 1 kN load just left of G
Consider section GH.
Take moment at G from C.
Consider clockwise moment as positive and anticlockwise moment as negative.
Apply 1 kN load just right of G
Consider section GH.
Take moment at G from C.
Consider clockwise moment as positive and anticlockwise moment as negative.
Thus, the equation of vertical reaction at supports C as follows,
Find the influence line ordinate of
Substitute 20 m for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (m) | Points | Influence line ordinate of |
0 | D | 0 |
4 | E | 0 |
8 | F | 0 |
14 | G | 0 |
20 | H | 1 |
Sketch the influence line diagram for vertical reaction at supports C using Table 1 as shown in Figure 2.
Influence line for vertical reaction at support A.
Apply 1 kN load just left of F
Refer Figure 1.
Find the equation of vertical reaction at supports C.
Consider section DF.
Take moment at B from A.
Consider clockwise moment as positive and anticlockwise moment as negative.
Apply 1 kN load just right of F.
Consider section FH.
Consider moment at B from A is equal to from C.
Consider clockwise moment as positive and anticlockwise moment as negative.
Find the equation of vertical reaction at A from F to G
Substitute 0 for
Find the equation of vertical reaction at A from G to H
Substitute
Thus, the equation of vertical reaction at supports A as follows,
Find the influence line ordinate of
Substitute 14 m for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (m) | Points | Influence line ordinate of |
0 | D | 1 |
4 | E | 0.5 |
8 | F | 0 |
14 | G | |
20 | H | 0 |
Sketch the influence line diagram for the vertical reaction at support A using Table 2 as shown in Figure 3.
Influence line for vertical reaction at support B.
Apply a 1 kN unit moving load at a distance of x from left end C.
Refer Figure 1.
Apply vertical equilibrium in the system.
Consider upward force as positive and downward force as negative.
Find the equation of vertical support reaction
Substitute
Find the equation of vertical support reaction
Substitute
Thus, the equation of vertical support reaction at B as follows,
Find the influence line ordinate of
Substitute 8 m for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (m) | Points | Influence line ordinate of |
0 | D | 0 |
4 | E | 0.5 |
8 | F | 1 |
14 | G | 1.75 |
20 | H | 0 |
Sketch the influence line diagram for the vertical reaction at support B using Table 3 as shown in Figure 4.
Influence line for shear at point E.
Find the equation of shear
Apply 1 kN just left of E.
Consider section DE.
Sketch the free body diagram of the section AD as shown in Figure 5.
Refer Figure 5.
Apply equilibrium equation of forces.
Consider upward force as positive
Find the equation of shear force at E of portion DE
Substitute
Find the equation of shear
Apply 1 kN just right of E.
Consider section DE.
Sketch the free body diagram of the section DE as shown in Figure 6.
Refer Figure 6.
Apply equilibrium equation of forces.
Consider upward force as positive
Find the equation of shear force at E of portion EG
Substitute
Find the equation of shear force at E of portion GH
Substitute
Thus, the equations of the influence line for
Find the influence line ordinate of
Substitute 4 m for
Thus, the influence line ordinate of
Find the shear force of
x (m) | Points | Influence line ordinate of |
0 | D | 0 |
4 | ||
4 | ||
8 | F | 0 |
14 | G | |
20 | H | 0 |
Draw the influence lines for the shear force at point E using Table 4 as shown in Figure 7.
Influence line for moment at point E.
Refer Figure 5.
Consider section DE.
Consider clockwise moment as positive and anticlockwise moment as negative.
Take moment at E.
Find the equation of moment at E of portion DE
Substitute
Refer Figure 6.
Consider section DE.
Find the equation of moment at E of portion EH
Consider clockwise moment as positive and anticlockwise moment as negative.
Take moment at E.
Find the equation of moment at E of portion EF.
Find the equation of moment at E of portion EG
Substitute
Find the equation of moment at E of portion GH
Substitute
Thus, the equations of the influence line for
Find the influence line ordinate of
Substitute 4 m for
Thus, the influence line ordinate of
Find the moment at various points of x using the Equations (15), (16), and (17) and summarize the value as in Table 5.
x (m) | Points | Influence line ordinate of |
0 | D | 0 |
4 | E | 2 |
8 | F | 0 |
14 | G | |
20 | H | 0 |
Draw the influence lines for the moment at point E using Table 5 as shown in Figure 8.
Therefore, the influence lines for the vertical reactions at supports A, B, and C and the influence lines for the shear and bending moment at point E are drawn.
Want to see more full solutions like this?
Chapter 8 Solutions
Structural Analysis (MindTap Course List)
- A simply supported beam is subjected to the end couples (bending is about the strong axis) and the axial load shown in the figure below. These moments and axial load are from service loads and consist of equal parts dead load and live load. Lateral support is provided only at the ends. Neglect the weight of the beam and investigate this member as a beam-column. Use Fy that P40 k and M = 68 ft-k. For W10 × 33: I = 171 in.4; 10 ft and C₁ = 1.0: Mn = 134 ft-kips and Mn/₁ = 89.3 ft-kips; = 50 ksi. Suppose for Lb for Lc - = 10 ft: Pn 330 kips and Pr/c = 220 kips. W10 X 33 P M M 10' Pu A) + Ферп 9 a. Use LRFD. Select the interaction formula: Mur 84, Mnz Muy + <1.0 Фь Мпу Pu Mur Muy B) + + ≤ 1.0 20c Pn Фь Мих nx ФоМпу -Select- ✓ Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member is -Select- b. Use ASD. Select the interaction formula: Ра 8 Max May A) + + <1.0 Pn/c Mnx/b Mny/b Pa Max May B) + + 1.0 2Pn/c Mnx/b Mny/b -Select- Compute the…arrow_forwardDetermine whether the given member satisfies the appropriate AISC interaction equation. Do not consider moment amplification. The loads are 50% dead load and 50% live load. Bending is about the x axis, and the steel is ASTM A992. Suppose that P = 280 k. For W12 x 106 with Fy = 50 ksi and Lc = 14 feet: Ферп 1130 kips, Pn/Sc = 755 kips, Mn = 597 ft-kips, Mn/₁ = 397 ft-kips. P 240 ft-k W12 X 106 14' K₁ = Ky = 1.0 240 ft-k a. Use LRFD. P Determine the factored axial compressive load and the factored bending moment. (Express your answers to three significant figures.) P₁ = Mu = kips ft-kips Select the interaction formula: P₁ A) + Мих Muy + ≤1.0 Ферп 9 Фь Мих of Mny Pu Мих Muy B) + 20c Pn Mnz + <1.0 Фь Мпу -Select- Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member -Select- b. Use ASD. the AISC Specification. Determine the total axial compressive load and the maximum bending moment. (Express your answers to three significant…arrow_forwardRefer to the following figure: K 6 m T 0.25 H 0.75 H 1 m A c,O,Y 3 m B 2 m 1 m C Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 17.5 kN/m³, c = 30 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the sheet-pile section modulus for the braced cut. Use all = 150 MN/m². (Enter your answer to three significant figures.) S = ×105 m³/marrow_forward
- Refer to the braced cut shown in the following figure: -3.5 m 1 m A Sand Y,',c' 2 m B 2 m C 1.5 m Given: γ · = 21 kN/m³, ′ = 40°, and c' = 0. The struts are located at 4 m center-to-center in the plan. Determine the strut loads at levels A, B, and C. (Enter your answers to three significant figures.) PA = kN PB = kN Pc kNarrow_forwardRefer to the following figures: 6 m 0.25 H 0.75 H 3 m 2 m 1 m A с.ф.у 1 m B Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 18.4 kN/m³, c = 30 kN/m², p = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the strut loads at levels A, B, and C. (Enter your answers to three significant figures.) PA= kN PB = kN Pc= kNarrow_forwardRefer to the following figure: 6 m 3 m 2 m 1 m A c,φ,γ 1 m B Given: y = 17.9 kN/m³, c = 60 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. The length of the cut is 12.5 m. Determine the factor of safety against bottom heave for the braced cut. Use the equation CNC (1+0.25) FS = զ с x + H B' :) H (Enter your answer to three significant figures.) FS =arrow_forward
- Given Data Initial Road Design: • Design speed: 85 km/h • • Radius of both circular arcs: R = 845 m = 0.44 m/s³ = 250 m • Rate of gain of radial acceleration on all transitions: q Length of straight section between the curves: Lstr Redesigned Road: New design speed: 120 km/h • New radius: R' = 2500 marrow_forwardKindly answer correctly. Do not use AI.Please show the following:A diagram showing your understanding of each part of each question;Show your method of solving it; andCorrect solutions.arrow_forwardKindly show all the steps including a diagram.arrow_forward
- 4-7 Nitrogen (molecular weight 28) expands reversibly in perfectly thermally insulated cylinder from 3.5bar, 200°C to a volume of 0.09m. If the initial volume occupied was 0.03m³, calculate the work done during the expansion. Assume nitrogen to be perfect gas and take Cv = 0.741kJ/kg.K (9.31kJ) 4-8 1kg of air at 1.02bar, 20°C is compressed reversibly according to a law p.V¹³ = const., to a pressure of 5.5bar. Calculate the work done on the air and the heat flow to or from the cylinder walls during the compression. (133.5kJ/kg; -33.38kJ/kg)arrow_forwardable to help me with the question below with references (APA) for revision purpose Structural InvestigationThe Building Maintenance and Strata Management Act 2004 interprets “Structural elements,for a building means an internal or external load-bearing component of the building or part ofthe building that is essential to the stability of the building but exclude any door or window.”Loading-bearing components such as wall, column or beam, etc, are subjected to externalforces. (a) Interpret the diagnosis of a structural defect and discuss FOUR (4) external forces ona structure element that may cause structural cracks.(b) Discuss the effects of alkali-silica reaction on concrete structures and formulateFOUR (4) preventive measures.(c) Discuss the differences between chloride attack and sulphate attack on concretestructures(d) Formulate preventive measures to prevent or reduce chloride and sulphate attack onconcrete structures Hard FinishesNatural timber flooring such as timber strips…arrow_forwardDetermine the following "Side Shot" elevations given the following information:arrow_forward
