Concept explainers
Draw the influence lines for the reaction moment at support A, the vertical reactions at supports A and F and the shear and bending moment at point E.
Explanation of Solution
Calculation:
Influence line for moment at support A.
Apply a 1 kN unit moving load at a distance of x from left end C.
Sketch the free body diagram of frame as shown in Figure 1.
Refer Figure 1.
Apply 1 kN load just left of C
Take moment at A from B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Apply 1 kN load just right of C and just left of D
Take moment at A from D.
Apply 1 kN load just right of D and just right of F
Take moment at A from F.
Thus, the equation of moment at A as follows,
Find the influence line ordinate of
Substitute 0 for
Find the influence line ordinate of
The vertical reaction at F is 1 kN when 1 kN applied at F.
Substitute 20 m for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (m) | Points | Influence line ordinate of |
0 | B | ‑5 |
5 | C | 0 |
10 | D | 5 |
20 | F | 0 |
Sketch the influence line diagram for the moment at support A using Table 1 as shown in Figure 2.
Influence line for vertical reaction at support F.
Apply a 1 kN unit moving load at a distance of x from left end C.
Refer Figure 1.
Find the vertical support reaction
Apply 1 kN load just left of D
Consider section DF.
Consider moment equilibrium at point D.
Consider clockwise moment as positive and anticlockwise moment as negative
Apply 1 kN load just right of D
Consider section DF.
Consider moment equilibrium at point D.
Consider clockwise moment as positive and anticlockwise moment as negative
Thus, the equation of vertical support reaction at F as follows,
Find the influence line ordinate of
Substitute 20 for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (m) | Points | Influence line ordinate of |
0 | B | 0 |
5 | C | 0 |
10 | D | 0 |
15 | E | 0.5 |
20 | F | 1 |
Sketch the influence line diagram for the vertical reaction at support F using Table 2 as shown in Figure 3.
Influence line for vertical reaction at support A.
Apply a 1 kN unit moving load at a distance of x from left end C.
Refer Figure 1.
Apply vertical equilibrium in the system.
Consider upward force as positive and downward force as negative.
Find the equation of vertical support reaction
Substitute 0 for
Find the equation of vertical support reaction
Substitute
Thus, the equation of vertical support reaction at A as follows,
Find the influence line ordinate of
Substitute 20 m for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (m) | Points | Influence line ordinate of |
0 | B | 1 |
5 | C | 1 |
10 | D | 1 |
15 | E | 0.5 |
20 | F | 0 |
Sketch the influence line diagram for the vertical reaction at support A using Table 3 as shown in Figure 4.
Influence line for shear at point E.
Sketch the free body diagram of the section BD as shown in Figure 5.
Refer Figure 5.
Apply equilibrium equation of forces.
Consider upward force as positive
Find the equation of shear force at E of portion BD
Substitute
Find the equation of shear force at E of portion DE
Substitute
Find the equation of shear force at E of portion EF
Sketch the free body diagram of the section EF as shown in Figure 6.
Refer Figure 6.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Thus, the equations of the influence line for
Find the influence line ordinate of
Substitute 15 m for
Thus, the influence line ordinate of
Find the shear force of
x (m) | Points | Influence line ordinate of |
0 | B | 0 |
5 | 0 | |
10 | 0 | |
15 | ||
15 | ||
20 | F | 0 |
Draw the influence lines for the shear force at point E using Table 4 as shown in Figure 7.
Influence line for moment at point E.
Refer Figure 5.
Consider section BE.
Consider clockwise moment as positive and anticlockwise moment as negative.
Take moment at E.
Find the equation of moment at E of portion BE.
Find the equation of moment at E of portion BD
Substitute
Find the equation of moment at E of portion DE
Substitute
Substitute
Refer Figure 6.
Consider section EF.
Find the equation of moment at E of portion EF
Consider clockwise moment as positive and anticlockwise moment as negative.
Take moment at E.
Find the equation of moment at E of portion EF.
Substitute
Thus, the equations of the influence line for
Find the influence line ordinate of
Substitute 15 m for
Thus, the influence line ordinate of
Find the moment at various points of x using the Equations (5) and (6) and summarize the value as in Table 5.
x (m) | Points | Influence line ordinate of |
0 | B | 0 |
5 | C | 0 |
10 | D | 0 |
15 | E | |
20 | F | 0 |
Draw the influence lines for the moment at point E using Table 5 as shown in Figure 8.
Therefore, the influence lines for the vertical reactions at supports A and F and the influence lines for the shear and bending moment at point E are drawn.
Want to see more full solutions like this?
Chapter 8 Solutions
Structural Analysis (MindTap Course List)
- Please provide a handwritten solution to the questionarrow_forwardPlease provide a handwritten solution to the questionarrow_forward-840 cm- K107-50/32 610- K108-50/32- 2 25 -K103-50/32- N101 (10132) K409-50/32-- 25 K101-25/50 620 cm 257 K102-25/50 25 620 25 N102 Şantiye denetimi iyi. B K105 25/50 - SORU 2: Yan yana derzle ayrılmış bloklardan oluşan bir okulun bir bloğuna ait +3.20 ve +6.40 m kotları kalıp planı verilmiştir. N101, N102, N103 hacimleri sınıf olarak kullanılacaktır. Malzeme:C30/37-B500C Kaplama: mozaik karo fad: 20 fid: 434.78 Dolgu (asmolen): en hafif gazbeton blok Duvar: 1 aksi kirişleri ile K104, K105, K110 ve K112 kirişleri üzerinde 25 cm lik dayanımı düşük gaz beton duvar vardır. a)Döşeme statik ve betonarme hesaplarını yaparak gerekli çizimleri veriniz. b)Tüm kirişlerin yüklerini hesaplayınız. A K110-50/32- K104-50/32- 12.5 K111 50/32 K106 25/50 Boşluk K112 25/50arrow_forward
- : +0 العنوان solle не A 4 يكا +91x PU + 96252 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of the door is 8 m below the free surface of the water. Determine the hydrostatic force on the door if it is located at the center of the the do strong pen , and discuss if the driver can open the door, if not; suggest a way for him to open it. Assume ong person can lift 100 kg, the passenger cabin is well-scaled so that no water leaks inside. The door can be approximated as a vertical rectangular plate ---20125 750 x2.01 Lakearrow_forwardPlease provide a handwritten solution to the question.arrow_forwardPlease provide a handwritten solution to the question.arrow_forward
- Section A-A B) Compute the static safety factor for the cantilever as shown in the figure. 80 mm 20 mm thick 40° 4.2 kN -400 mm-arrow_forwardPlease answer fast.arrow_forwardFind: The equivalent horizontal force acting on the retaining wall. Surcharge: q=20kPa Ym=16kN/m³ 3 m Q'=32° Loose Sand c'=0 Groundwater table 6 m Ym-19kN/m³ 4'=38° Dense Sand c'=0 Frictionless wallarrow_forward