Concept explainers
Draw the influence lines for the shear and bending moment at point F.
Explanation of Solution
Equation of influence line ordinate of support B:
Apply a 1 k unit moving load at a distance of x from left end D.
Sketch the free body diagram of frame as shown in Figure 1.
Refer Figure 1.
Consider the unit load at a variable position x to the left hinge D. (placed portion AC of the beam
Find the vertical support reaction
Take Moment at hinge D from left end A.
Consider clockwise moment as positive and anticlockwise moment as negative.
Consider the unit load at a variable position x to the right hinge D. (Place portion DG of the beam
Find the vertical support reaction
Take Moment at hinge D from left end A.
Consider clockwise moment as positive and anticlockwise moment as negative.
Thus, the equations of the influence line ordinate for
Equation of influence line ordinate of support E:
Refer Figure 1.
Find the equation of influence line ordinate for the vertical reaction
Apply moment equilibrium at G.
Consider clockwise moment as positive and anticlockwise moment as negative.
Find the influence line ordinate of vertical reaction
Substitute
Find the influence line ordinate of vertical reaction
Substitute
Thus, the equations of the influence line ordinate for
Equation of influence line ordinate of support G:
Refer Figure 1.
Find the equation of influence line ordinate for the vertical reaction
Consider the vertical forces equilibrium condition, take the upward force as positive
Find the influence line ordinate of vertical reaction
Substitute
Find the influence line ordinate of vertical reaction
Substitute
Thus, the equations of the influence line ordinate for
Influence line for shear at point F.
Find the equation of shear at F of portion AG
Sketch the free body diagram of the section AD as shown in Figure 2.
Refer Figure 2.
Apply equilibrium equation of forces.
Consider upward force as positive
Find the influence line ordinate of shear at F
Substitute
Find the influence line ordinate of shear at F
Substitute
Find the equation of shear at F of portion FG
Sketch the free body diagram of the section FG as shown in Figure 3.
Refer Figure 3.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute 0 for
Thus, the equations of the influence line ordinate for
Find the influence line ordinate of
x (ft) | Points | Influence line ordinate of |
0 | A | |
12 | 0 | |
24 | C | 0.25 |
36 | D | 0.5 |
48 | ||
60 | ||
60 | 0.5 | |
72 | G | 0 |
Sketch the influence line diagram for the shear at point F as shown in Figure 4.
Refer Figure 2.
Find the equation of bending moment at E of portion AD
Take moment at F.
Consider clockwise moment as positive and anticlockwise moment as negative.
Find the influence line ordinate of bending moment at F
Substitute
Find the influence line ordinate of bending moment at F
Substitute
Refer Figure 3.
Find the equation of bending moment at F of portion FG
Take moment at F.
Consider clockwise moment as negative and anticlockwise moment as positive.
Substitute
Thus, the equations of the influence line ordinate for
Find the influence line ordinate of
x (ft) | Points | Influence line ordinate of |
0 | A | 3 |
12 | 0 | |
24 | C | |
36 | D | |
48 | E | 0 |
60 | F | 6 |
72 | G | 0 |
Sketch the influence line diagram for the bending moment at point F as shown in Figure 5.
Want to see more full solutions like this?
Chapter 8 Solutions
Structural Analysis (MindTap Course List)
- Q2. Write the flexibility matrix corresponding to coordinates 1 and 2 for the structures shown. 13 ans: l 4 11 3 [16 51 6EI 126EI 5 2 (a) A -1- 2 (b) A B Constant EI 2arrow_forwardPlease solve with drawingarrow_forwardQ1: Compute the missing measurement of the lines AB & CD (using trigonometric method), and the coordinates of closed loop traverse ABCD as shown in the figure below. C 20 (due N) N 73° 18' E B S 41° 12' E མམ་བ A (100, 100) D 60 (due W)arrow_forward
- Name: Q.1 select the lightest W12 shape for column AB that support a service dead and live loads Po-150k and P-200k as shown in Figure. The beams and columns are oriented about the major axis and the columns are braced at top and mid-height using pinned end connections for out of plane buckling. ASTM A992 steel is used. Select the suitable answer below: I U B 8.00 All dimensions in feet 30.00 W18.76 8091 B Parrow_forward2) Determine volume of bioreactor SP 2nd order kinetics. V= ks2 Yieldsarrow_forwardThe question is in Turkish You need to explain the process in detailarrow_forward
- Q3. Design by LRFD maximum size side SMAW fillet welds required to develop the loads Po= 7. kips and PL-60kips for an L6x4x1/2, using E70XX electrodes steel. The member is connected on the sides of the 6-in leg and is subject to alternating loads. Draw the layout of welding. Note: 1-5/8 in. 1. All Steel sections are A36 2. The loads effect through the angle center of gravity. L6x4x1/2 Angle C.G. Parrow_forwardDesign the size side SMAW fillet welds required to develop the loads PD= 7. kips and PL=60kips for an L6x4x1/2, using E70XX electrodes steel. The member is to be connected with side welds and a weld at the end of the Q2 angle to a 5/8- inch thickness gusset plate. Balance the fillet welds around the center of gravity of the angle as shown in Figure (2). Use A36 steel. Draw the layout of welding. t=5/8 in. L 6x4x1/2 Angle C.G. P4 Figure -2-arrow_forward1. What is length of a curve if the design speed is 85mph. A grades of a road is 3% and -2% and has stopping sight distance is 820ft. Determine whether S<L or S>Larrow_forward