Concept explainers
Draw the influence lines for the reaction moment at support A, the vertical reactions at supports A and B and the shear at the internal hinge C.

Explanation of Solution
Calculation:
Influence line for vertical reaction at support B.
Apply a 1 k unit moving load at a distance of x from left end B.
Sketch the free body diagram of frame as shown in Figure 1.
Refer Figure 1.
Apply 1 k load just left of C
Consider section BC.
Consider moment equilibrium at C.
Take moment at C from B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Apply 1 k load just right of C
Consider section BC.
Consider moment equilibrium at C.
Take moment at C from B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Thus, the equation of vertical support reaction at B as follows,
Find the influence line ordinate of
Substitute 0 for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (ft) | Points | Influence line ordinate of |
0 | B | 1 |
10 | C | 0 |
20 | D | 0 |
30 | E | 0 |
40 | F | 0 |
Sketch the influence line diagram for vertical support reaction at B using Table 1 as shown in Figure 2.
Influence line for vertical reaction at support A.
Apply a 1 k unit moving load at a distance of x from left end C.
Refer Figure 1.
Find the vertical support reaction
Apply 1 k load just left of E
Consider section EF.
Consider moment equilibrium at point E.
Consider clockwise moment as positive and anticlockwise moment as negative
Apply 1 k load just right of E
Consider section EF.
Consider moment equilibrium at point E.
Consider clockwise moment as positive and anticlockwise moment as negative
Thus, the equation of vertical support reaction at F as follows,
Apply a 1 k unit moving load at a distance of x from left end B.
Refer Figure 1.
Apply vertical equilibrium in the system.
Consider upward force as positive and downward force as negative.
Find the equation of vertical support reaction
Substitute
Find the equation of vertical support reaction
Substitute
Find the equation of vertical support reaction
Substitute
Thus, the equation of vertical support reaction at A as follows,
Find the influence line ordinate of
Substitute 40 ft for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (ft) | Points | Influence line ordinate of |
0 | B | 0 |
10 | C | 1 |
20 | D | 1 |
30 | E | 1 |
40 | F | 0 |
Sketch the influence line diagram for the vertical reaction at support A using Table 3 as shown in Figure 3.
Influence line for moment at support A.
Apply a 1 k unit moving load at a distance of x from left end B.
Refer Figure 1.
Apply 1 k load just left of C
Take moment at A from B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Substitute
Apply 1 k load just right of C to just left of D
Take moment at A from B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Substitute
Apply 1 k load just right of D to just left of E
Take moment at A from F.
Consider clockwise moment as positive and anticlockwise moment as negative.
Substitute
Apply 1 k load just right of E
Take moment at A from F.
Consider clockwise moment as positive and anticlockwise moment as negative.
Substitute
Thus, the equation of moment at A as follows,
Find the influence line ordinate of
Substitute 0 for
Thus, the influence line ordinate of
Similarly calculate the influence line ordinate of
x (ft) | Points | Influence line ordinate of |
0 | B | 0 |
10 | C | ‑10 |
20 | D | 0 |
30 | E | 10 |
40 | F | 0 |
Sketch the influence line diagram for the moment at support A using Table 3 as shown in Figure 4.
Influence line for shear at point C.
Find the equation of shear force at C of portion BC
Sketch the free body diagram of the section BC when 1 k load placed between BC as shown in Figure 5.
Refer Figure 5.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Find the equation of shear force at C of portion CF
Sketch the free body diagram of the section BC when 1 k load placed between CF as shown in Figure 6.
Refer Figure 5.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Thus, the equations of the influence line for
Find the influence line ordinate of
Substitute 10 m for
Thus, the influence line ordinate of
Find the shear force of
x (ft) | Points | Influence line ordinate of |
0 | B | 0 |
10 | ‑1 | |
20 | 0 | |
30 | E | 0 |
40 | F | 0 |
Draw the influence lines for the shear force at point C using Table 4 as shown in Figure 7.
Therefore, the influence lines for the moment at support A and the vertical reactions at supports A and B and the influence lines for the shear hinge C are drawn.
Want to see more full solutions like this?
Chapter 8 Solutions
Structural Analysis, SI Edition
- The circular slab of radius 2 m supported by three columns, as shown in figure, is to be isotropically reinforced. Find the ultimate resisting moment per linear meter (m) required just to sustain a uniformly distributed load (q) equals 16 kN/m². Use equilibrium method in solution m Column marrow_forwardVehicles begin to arrive at a parking lot at 7:45 A.M. at a constant rate of 4 veh/min and continue to arrive at that rate throughout the day. The parking lot opens at 8:00 A.M. and vehicles are processed at a constant rate of one vehicle every 10 seconds. Assuming D/D/1 queuing, what is the longest queue, the queue at 8:15 A.M., and the average delay per vehicle from 7:45 A.M. until the queue clears?arrow_forward1. Gunakan teor luasi momen untuk menentukan putaran sudut (slope) di B. Gunakan E = 200 GPa dan I-70 x 100 mm². m 8 kN·m B 2. Gunakan teori luas momen dan tentukan putaran sudut (slope) di A dan perpindahan di C. Gunakan E = 200 GPa dan I = 70 x 100 mm². 4 kN 4 kN -2 m 2 m- B 4 m 4 marrow_forward
- Consider the conditions in Practice Problem 5.2. How short would the driver reaction times of oncoming vehicles have to be for the probability of an accident to equal 0.20?arrow_forwardPart 4: Problem-Solving. Solve the following problems. Show all calculations. 1. A Standard Penetration Test (SPT) was conducted at a site, and the following blow counts were recorded: Depth: 2 m, Blow count (N): 10 D D Depth: 4 m, Blow count (N): 15 Depth: 6 m, Blow count (N): 20 The energy ratio is 60%, and the overburden correction factor CN is 1.1. Calculate the corrected N-values for each depth. 2. A soil sample was collected from a depth of 3 m using a Shelby tube. The sample had a volume of 0.01 m³ and a mass of 18 kg. If the water content is 12%, calculate the (a) bulk density, (b) dry density, and (c) void ratio of the soil. Assume the specific gravity of soil solids (Gs) is 2.65. 3. A Cone Penetration Test (CPT) was conducted at a site, and the following data was obtained: Depth: 2 m, Cone resistance (qc): 5 MPa Depth: 4 m, Cone resistance (qc): 8 MPa Depth: 6 m, Cone resistance (qc): 12 MPa Estimate the soil type at each depth using typical qc correlations.arrow_forwardPls show step by step and formula usedarrow_forward
- A: Wel Question 2 (a) A simple circular hollow section (CHS) tubular K-joint in a steel structure, subjected to balanced axial loading, is illustrated in Figure 2a. Determine the maximum hot spot stress at the joint intersection of the chord and the loaded brace B. (b) The steel structure is installed in the seawater with cathodic protection. Determine the number of stress cycles to failure based on the maximum hot stress range obtained in part (a). Use the NORSOK standard. (Refer to S-N curves for tubular joints in air environment and seawater with cathodic protection). (c) Estimate the number of load repetitions required to induce fatigue failure in the tubular joint, based on the load history provided in Figure 2b. The nominal yield and ultimate tensile strength are 355 N/mm² and 510 N/mm², respectively. Assume a damage limit of 1.0. Use the Modified Goodman formulation to determine the equivalent completely reversed stress. (d) Describe briefly the procedure to determine the hot…arrow_forwardThe steel member is a fillet welded built-up section that comprises two flange plates (100mm x 20mm) and a web plate (250mm x 10mm) as depicted in Section A-A. The leg size of the weld is 8 mm. Use an appropriate consequence class. Based on the damage tolerant method and the modified Goodman equation. Determine an equivalent completely reversed stress. Ignore the vibration and dynamic amplification. Use Euro-code 1993-1-9. (a) Calculate the maximum and minimum stresses at steel member section A-A. (b) Check the fatigue resistance of the steel member at Section A-A using the fatigue limit. (c) Discuss the possible failure mode of the steel member due to fatigue loading. State your design assumptions, if any. Steel plate (Flange) 100mm x 20mm 10.0 m Fillet weld (manual) (Typical) Steel plate (Web) 250mm x 10 mm Steel plate (Flange) 100mm x 20mm Section A-A Fixed end Welded built-up steel section 5.0 m A 2.5m 3.0 m Fatigue load range 5 kN A Total weight of steel section Total weight of…arrow_forward30 20 10 Stress N/mm² 0 -10 -20 -30 Time Question 1 A Grade S355 steel member, which forms part of the structural framework supporting a storage tank in a warehouse, is subjected to various loads, as shown in Figure 1. The yield and tensile strength of the steel member are 355 N/mm² and 510 N/mm², respectively. The steel member is subjected to axial tension due to its self-weight and appurtenances of 40.0kN. The 10.0kN storage tank is positioned 1.0 m from the centreline of the steel member, and it experiences a fatigue load range of 5.0kN. The steel member is a fillet welded built-up section that comprises two flange plates (100mm x 20mm) and a web plate (250mm x 10mm) as depicted in Section A-A. The leg size of the weld is 8 mm. Use an appropriate consequence class. Based on the damage tolerant method and the modified Goodman equation. Determine an equivalent completely reversed stress. Ignore the vibration and dynamic amplification. Use Euro-code 1993-1-9. (a) Calculate the maximum…arrow_forward
- Please do not use design aid - R. Show step by step and every formular usedarrow_forwardFollowing is the variation of the field standard penetration number (№60) in a sand deposit: Depth (m) N60 1.5 6 3 8 4.5 9 6 8 7.5 9 13 14 The groundwater table is located at a depth of 6 m. Given: the dry unit weight of sand from 0 to a depth of 6 m is 16 kN/m³, and the saturated unit weight of sand for depth 6 to 12 m is 18.2 kN/m². Use the relationship given in the equation CN = 1 σo/Pa 0.5 to calculate the corrected penetration numbers. (Round your answers to the nearest whole number.) Depth (m) Neo (N1)00 1.5 3 6 8 4.5 9 6 7.5 9 14 8 13arrow_forward1,5 m 1,5 m A 1,6 KN F 0,8 m E 0,8 marrow_forward
