FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 33EP
Water at
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please answer number 4
1. Water flows through a venturi meter. At the constricted section where the area is 24cm², the pressure is 10.2N/cm², and at the section where the area is 64cm², the pressure is 18.0N/cm². Determine the velocities of water in the larger and smaller pipes and the rate of flow.
2. Why is a water tower generally placed on top of a hill? If the hill is 50m high, can it supply water to the top of a 100-m tal officebbuilding? If not, how does water get to that floor?.
Determine the velocity of the flow of water @45C is flowing through a 3-in ID smooth pipe.
The friction loss for a 75 ft section of the pipe amounts to 2.4 lbf / lbm.
Chapter 8 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - How does surface roughness affect the pressure...
Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Water at 70F passes through...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 10C (p = 999.7 kg/m3 and = 1.307 ×...Ch. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Air enters a 10-m-long section of a rectangular...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - Consider the fully developed flow of glycerin at...Ch. 8 - The velocity profile for a steady laminar flow in...Ch. 8 - The generalized Bernoulli equation for unsteady...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - Prob. 68CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - Prob. 74PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 76EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Gasoline (p = 680 kg/m3 and v = 4.29 × 10-7 m2/s)...Ch. 8 - Prob. 81EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 83PCh. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 89PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 93PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - In large buildings, hot water in a water tank is...Ch. 8 - Prob. 99PCh. 8 - Two pipes of identical length and material are...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - What is the difference between laser Doppler...Ch. 8 - Prob. 103CPCh. 8 - Prob. 104CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 106CPCh. 8 - Prob. 107CPCh. 8 - Prob. 108CPCh. 8 - A 15-L kerosene tank (p = 820 kg/m3) is filled...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114EPCh. 8 - Prob. 115EPCh. 8 - Prob. 116PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Prob. 121PCh. 8 - Prob. 122EPCh. 8 - Prob. 123PCh. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 125PCh. 8 - Prob. 126PCh. 8 - Prob. 127PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Prob. 129PCh. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 133PCh. 8 - Two pipes of identical diameter and material are...Ch. 8 - Prob. 135PCh. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Consider flow front a reservoir through a...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 142PCh. 8 - Prob. 145EPCh. 8 - Prob. 146EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 148PCh. 8 - Prob. 152PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 155PCh. 8 - Find the total volume flow rate leaving a tank...Ch. 8 - Prob. 158PCh. 8 - Water is siphoned from a reservoir open to the...Ch. 8 - It is a well-known fact that Roman aqueduct...Ch. 8 - In a piping system, what is used to control the...Ch. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Consider laminar flow of water in a...Ch. 8 - Water at 10 C flows in a 1.2-cm-diameter pipe at a...Ch. 8 - Engine oil at 20 C flows in a 15-cm-diamcter pipe...Ch. 8 - Prob. 169PCh. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Prob. 172PCh. 8 - Air at 1 atm and 25 C flows in a 4-cm-diameter...Ch. 8 - Hot combustion 8ases approximated as air at I atm...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - The valve in a piping system cause a 3.1 in head...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 182PCh. 8 - Prob. 183PCh. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two pipes, one of internal diameter (I.D.) 0.5 m and the other of I.D. 1 m, are connected as shown in Fig. 3 to a pipe of I.D. 1.2 m. Oil with a density of 880 kg/m3 flows through the pipe system at a total flowrate of 0.5 m3/s. If the liquid velocity in each of the two smaller-diameter pipes is the same, calculate this velocity, the corresponding volumetric and mass flowrates in the two pipes, and also the velocity in the large outlet pipe.arrow_forwardUsing Q=VA formula But how Can i take the area. OD or ID. Please solve it correctly fast.arrow_forward5. Water is pumped at a rate of 6 x 104m³/s in a horizontal pipe of 0.04 m diameter and 150 m length. The pipe rises 104 m to a storage vessel. The water passes through a heat exchanger before the vessel. If the pressure drop in the exchanger is 150.15 kPa, calculate the power supply to the pump. Given: Roughness of the pipe surface = 0.00026 m Efficiency of the pump = 0,65 Density of water = = 103kg/m³ Viscosity = 10-³Ns/m²arrow_forward
- Water at 15°C is pumped from a reservior at a rate of 0.2428 m³/s where the local atmospheric pressure is 96.5 kPa. The total head loss in the suction pipe is 1.1 m. From the manufacturer data, the NPSH required at this operating point is 6.6. Determine the maximum height hs (meters) before cavitation can occur. Round off your answer to 3 decimal places. (10 mins) hs Vs Suction pipe Free surface of liquid Sumparrow_forward4. Three storage tanks A, B and C are connected to a piping system as shown in Fig. The flow rate of water in the pipe which is connected to tank B is 0.06 m³/s. Determine the flow rate in the other two pipes and then calculate the level of the water in tank B relative to ground level. Friction factor, f = 0.01. ZA= 25 m A ₁=1000 m d₁= 0.3 m Q₁ = ? l₁= 600 m d,= 0.2 m Q = 0.06 m²/s 1₂= 1300 m d₁= 0.2 m Q₂ = ? B C Zc = 11 m Zaarrow_forwardWater is to be moved from one large reservoir to another at a higher elevation as indicated in the figure below. The loss in available energy associated with 6.2 ft³/s being pumped from sections (1) to (2) is 61V²/2 ft²/s², where Vis the average velocity of water in the 8-in. inside-diameter piping involved. Determine the amount of shaft power required. Assume z = 56 ft. W shaft i 281.988 Section (1) be hp 8-in. inside- diameter pipe Pump Section (2)arrow_forward
- Oil with specific gravity of 0.87 is being pumped from a reservoir to an elevated tank as shown below. The pump in the system is 80% efficient and is rated at 240 kW (i.e. Pp is 240 kW). Determine the flow rate of oil in the pipe if the total head loss from point 1 to point 2 is 12 m of oil. Point 2 represents the exit of the pipe. Reference line is the ground level. The stopping error ɛs is 3%. You should maximum have 2 iterations after the first value. Elev. 2 50 200-mm-diameter pipe Pump -160-mm -diameter pipe -Elev. 150 m Oilarrow_forwardWhat is the velocity of the pipe center (m/s)? Given that h3%3D88.3 cm h3 h2 =7 cm h=3 cm Water .arrow_forwardWater at 25oC is pumped at a constant rate of 10 m3/h from a large reservoir resting on the floorto the open top of an experimental absorption tower. The point of discharge 5 m above the floor,and friction losses in the 1-½-in. Schedule 40 steel pipe from the reservoir to the tower amount to2.55 J/kg. At what height in the reservoir must the water level be kept if the pump can deliver only0.1 kW?arrow_forward
- 1- Write what you now about Bernoulli's equation and why it is very important in our life 2- A large tank open to the atmosphere is filled with water to a height of 5 `m from the outlet tap. A tap near the bottom of the tank is now opened, and water flows out from the smooth and rounded outlet. Determine the maximum water velocity at the outlet. 3- Define Reynolds Number, and discuss why it important in water distribution system.arrow_forward6. Water is flowing through a pipe having diameter 300mm and 200 mm at the bottom and upper end respectively. The pressure at the lower(bigger) end is 25 N/cm2 and the pressure at the upper end is 10 N/cm2. Determine the difference in datum head if the rate of flow through pipe is 40 lit/s.arrow_forwardOil is being pumped from an Open Tank A (elev = 110m) to another Open Tank B (elev = 220m) with a total head loss of 15m of Oil. The pump has a power rating of 210kW and an efficiency of 65%. Pipe 1 (D = 200mm) connects Tank A and the pump while Pipe 2 (D = 150mm) connects the pump and Tank B. Calculate the pump head, velocity of flow in Pipe 1, mass flowrate in Pipe 2, power output of the pump and volumetric flowrate of oil.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License