Concept explainers
Shell-and-tube heat exchangers with hundred of tubes housed in a shell are commonly used in practice for heat transfer between two fluids. Such a heat exchanger used in au active solar liot-watet system transfers heat froiui a water-atnifreeze solution flowing through the shell and the solar collector to fresh water flowing through the tubes at an average temperature of 64ƯC al a ¡‘ale of I S L’s. The heat exchangei’ contains 80 biass tubes I ciii in immer diameter and 1.5 in in length. Disregaidiiig inkt. exit, and header losses. detennine tite pressure drop across a single itibe and the pmnping power required by the rube-side finid of the heat exchaiiger.
After operating a long time. I-tutu-thick scale builds up on the inner surfaces with an equivalent rougluiess of 0.4 mm.
For the saine pwnplng power input. detennine tIme percent reductiomi in the flow rate of water through the tubes.
The pressure drop across a single tube.
The plumbing power required by the tube side fluid of the heat exchanger.
The percent reduction in the flow rate of water through the tubes.
Answer to Problem 136P
The pressure drop across a single tube is
The plumbing power required by the tube side fluid of the heat exchanger is
The percent reduction in the flow rate of water through the tubes is
Explanation of Solution
Given information:
The average temperature of water flowing through the tubes is
Write the expression for the average velocity.
Here, volume flow rate of fluid is
Write the expression of total area of tubes.
Here, the number of tube is
Write the expression for the Reynolds number.
Here, the density of fluid is
Write the expression for the Colebrook equation.
Here, the friction factor is
Write the expression for the pressure drop.
Here, the friction factor is
Write the expression for the pumping power.
Here, volume flow rate of fluid is
Write the expression of percentage reduction in flow rate.
Here, the given flow rate is
Substitute
Substitute
Refer table 3E "Properties of water" to find the dynamic viscosity of water corresponding to
Substitute,
Refer Table 8-2 "Equivalence roughness values for new commercial pipes" to find the value of roughness is
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute,
Substitute
Substitute
Substitute
There are five Equations (VIII), (IX), (X), (XI) and (XII) with five unknowns
Use the trial and error method to find the values.
Assume
Substitute
Substitute
Substitute
Substitute
Substitute
By substituting
Now use
Substitute
Substitute
Substitute
Substitute
Substitute
Now, By substituting
The values of
The value of
The value of
The value of
And the value of
Substitute
Conclusion:
The pressure drop across a single tube is
The plumbing power required by the tube side fluid of the heat exchanger is
The percent reduction in the flow rate of water through the tubes is
Want to see more full solutions like this?
Chapter 8 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forward
- this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forwardThe beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forward
- A beam of the cross section shown in Figure Q3 is made of a steel that is assumed to be elastic- perfectectly plastic material with E = 200 GPa and σy = 240 MPa. Determine: i. The shape factor of the cross section ii. The bending moment at which the plastic zones at the top and bottom of the bar are 30 mm thick. 15 mm 30 mm 15 mm 30 mm 30 mm 30 mmarrow_forwardA torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild, using: (a) The maximum shearing stress theory (b) The maximum distortion energy theory T Figure Q1arrow_forwardAn external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forward
- so A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardI need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning