Concept explainers
(a)
Interpretation:
The number of moles of substrate that are hydrolyzed per second per milligram of enzyme when the substrate concentration is much greater than Km.
Concept introduction:
The region of the enzyme to which substrate molecules binds is known as the active site. The binding of substrate with the active site converts it into product molecules. Turnover number is the maximum number of substrate molecules that can be converted into products per catalytic site.
(b)
Interpretation:
The moles of active site in 1 mg of enzyme.
Concept introduction:
The region of the enzyme to which substrate molecules binds is known as the active site. The binding of substrate with the active site converts it into product molecules. Turnover number is the maximum number of substrate molecules that can be converted into products per catalytic site.
(c)
Interpretation:
The turnover number of the enzyme.
Concept introduction:
The region of the enzyme to which substrate molecules binds is known as the active site. The binding of substrate with the active site converts it into product molecules. Turnover number is the maximnumber of substrate molecules that can be converted into products per catalytic site.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
BIOCHEMISTRY
- 1:30 5G 47% Problem 10 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot for an enzyme with and without a competitive inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. 1 -1 1 mM [S]' s mM¹ with 10 mg pe 20 V' 54 10 36 > ст 5 27 2.5 23 1.25 20 Answer: |||arrow_forwardProblem 14 of 15 Submit Using the following reaction data points, construct Lineweaver-Burk plots for an enzyme with and without an inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Using the information from this plot, determine the type of inhibitor present. 1 mM-1 1 s mM -1 [S]' V' with 10 μg per 20 54 10 36 20 5 27 2.5 23 1.25 20 Answer: |||arrow_forward12:36 CO Problem 9 of 15 4G. 53% Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the value of the catalytic efficiency (specificity constant) given that the enzyme concentration in this experiment is 5.0 μ.Μ. 1 [S] ¨‚ μM-1 1 V sμM-1 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| O Гarrow_forward
- Problem 11 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot for an enzyme with and without a noncompetitive inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. 1 -1 1 mM [S]' 20 V' s mM¹ with 10 μg per 54 10 36 > ст 5 27 2.5 23 1.25 20 Answer: |||arrow_forwardProblem 13 of 15 Submit Using the following reaction data points, construct Lineweaver-Burk plots for an enzyme with and without an inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Using the information from this plot, determine the type of inhibitor present. 1 mM-1 1 s mM -1 [S]' V' with 10 μg per 20 54 10 36 20 5 27 2.5 23 1.25 20 Answer: |||arrow_forward12:33 CO Problem 8 of 15 4G. 53% Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the value of kcat given that the enzyme concentration in this experiment is 5.0 μM. 1 [S] , мм -1 1 V₁ s μM 1 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| Гarrow_forward
- 1:33 5G. 46% Problem 12 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot for an enzyme with and without an uncompetitive inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. 1 -1 1 mM [S]' 20 V' s mM¹ with 10 μg per 54 10 36 > ст 5 27 2.5 23 1.25 20 Answer: |||arrow_forward12:33 CO Problem 7 of 15 4G. 53% Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the value of Vmax. Report your answer to three significant figures. 1 , mM-1 1 [S] V' sμM-¹ 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| Гarrow_forward12:33 CO Problem 5 of 15 4G 54% Done On the following Lineweaver-Burk 1 plot, identify the by dragging the Vmax point to the appropriate value on the line. NI 35 30- 25 20- 15- 10 5. 1 Vmax -15 10 -5 0 5 10 15 20 20 ||| で Г 25 30 1/[S]arrow_forward
- 12:20 V 0.1- 0:09. 0.08 0:07 0.06 -0.05- 0:04- -0.03- -0.02- 4G 56% Problem 1 of 15 Done On the following Michaelis-Menten plot, estimate the value of - Vmax by 1 2 dragging the line to the appropriate value on the y-axis. 0.01 V max 0 0.5 ||| 1.5 2.5 3.5 4 ISLarrow_forward12:33 CO 4G 54% Problem 6 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the Km. 1 mM-1 1 [S]' " s mM-1 V 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| Гarrow_forwardV 0.1- 0:09 0:08 0:07- -0.06 -0.05 0:04- 0:03 0:02 0:01- Problem 2 of 15 Done On the following Michaelis-Menten plot, estimate the value of Kм by dragging the point to the appropriate value on the x-axis. I T | 0 0.5 1.5 2 KM -0:01- ||| 25 2.5 3 3.5 4 Г [S] powered by desmosarrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningAnatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax College




