
The article “Advances in Oxygen Equivalence liquations for Predicting the Properties of Titanium Welds” (D. Harwig, W. Ittiwattana, and H. Castner, The Welding Journal, 2001:126s–136s) reports an experiment to predict various properties of titanium welds. Among other properties, the elongation (in %) was measured, along with the oxygen content and nitrogen content (both in percent). The following MINITAB output presents results of fitting the model
- a. Predict the elongation for a weld with an oxygen content of 0.15% and a nitrogen content of 0.01%.
- b. If two welds both have a nitrogen content of 0.006%, and their oxygen content differs by 0.05%, what would you predict their difference in elongation to be?
- c. Two welds have identical oxygen contents, and nitrogen contents that differ by 0.005%. Is this enough information to predict their difference in elongation? If so, predict the elongation. If not, explain what additional information is needed.
a.

Find the predicted elongation percent of a weld with 0.15% of oxygen content and 0.01% of nitrogen content.
Answer to Problem 1SE
The predicted elongation percent of a weld with 0.15% of oxygen content and 0.01% of nitrogen content is likely to be 24.6%.
Explanation of Solution
Calculation:
The data represents the MINITAB output of the regression model
Multiple linear regression model:
A multiple linear regression model is given as
The ‘Coefficient’ column of the regression analysis MINITAB output gives the slopes corresponding to the respective variables stored in the column ‘Predictor’.
Let
From the accompanying MINITAB output, the intercept is
The estimates of the slopes are:
Thus, using the definition of a multiple regression model, the multiple regression equation is:
Here,
Predicted elongation percent of a weld:
Thus, the predicted elongation percent of a weld with 0.15% of oxygen content and 0.01% of nitrogen content is likely to be 24.6%.
b.

Find the change between the elongation percent of the two welds when the nitrogen content is 0.006% for both the welds with one weld containing 0.05% more oxygen content.
Answer to Problem 1SE
The elongation percent of two welds differ by –5.43% when the nitrogen content is 0.006% for both the welds with one weld containing 0.05% more oxygen content.
Explanation of Solution
Justification:
Slope in a multiple regression equation:
The slope
The multiple regression line is,
The coefficient or slope of Oxygen content in the regression model is
From this it can be said that, the value of elongation percent decreases by 130.11 for a 1% increase in Oxygen content, provided the effects of Nitrogen content is accounted for.
Here, both the welds have same Nitrogen content 0.006% and one weld has 0.05% more oxygen content than the other.
The change between the elongation percent of two welds is,
Thus, the elongation percent of two welds differ by –5.43% when the nitrogen content is 0.006% for both the welds with one weld containing 0.05% more oxygen content.
c.

Check whether it is possible to estimate the change in the elongation percent of the two welds when the nitrogen content is same for both the welds with one weld containing 0.005% more oxygen content.
If possible, predict the change.
Answer to Problem 1SE
No, it is not possible to estimate the change in the elongation percent of the two welds when the nitrogen content is same for both the welds with one weld containing 0.005% more oxygen content.
Explanation of Solution
Justification:
Slope in a multiple regression equation:
The slope
The multiple regression line is,
Here, the elongation is dependent on the nitrogen content, oxygen content and the interaction of nitrogen and oxygen content.
Hence, the coefficient of
Therefore, it is not possible to determine the change in the elongation percent only with the value of oxygen content.
Thus, it is not possible to estimate the change in the elongation percent of the two welds when the nitrogen content is same for both the welds with one weld containing 0.005% more oxygen content.
Want to see more full solutions like this?
Chapter 8 Solutions
Statistics for Engineers and Scientists
Additional Math Textbook Solutions
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
Introductory Statistics
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics: Picturing the World (7th Edition)
Algebra and Trigonometry (6th Edition)
- Cycles to failure Position in ascending order 0.5 f(x)) (x;) Problem 44 Marsha, a renowned cake scientist, is trying to determine how long different cakes can survive intense fork attacks before collapsing into crumbs. To simulate real-world cake consumption, she designs a test where cakes are subjected to repeated fork stabs and bites, mimicking the brutal reality of birthday parties. After rigorous testing, Marsha records 10 observations of how many stabs each cake endured before structural failure. Construct P-P plots for (a.) a normal distribution, (b.) a lognormal distribution, and (c.) a Weibull distribution (using the information included in the table below). Which distribution seems to be the best model for the cycles to failure for this material? Explain your answer in detail. Observation Empirical cumulative Probability distribution Cumulative distribution Inverse of cumulative distribution F-1 (-0.5) F(x)) (S) n 4 3 1 0.05 9 5 2 0.15 7 7 3 0.25 1 10 4 0.35 3 12 5 0.45 Normal…arrow_forwardProblem 3 In their lab, engineer Daniel and Paulina are desperately trying to perfect time travel. But the problem is that their machine still struggles with power inconsistencies-sometimes generating too little energy, other times too much, causing unstable time jumps. To prevent catastrophic misjumps into the Jurassic era or the far future, they must calibrate the machine's power output. After extensive testing, they found that the time machine's power output follows a normal distribution, with an average energy level of 8.7 gigawatts and a standard deviation of 1.2 gigawatts. The Time Travel Safety Board has set strict guidelines: For a successful time jump, the machine's power must be between 8.5 and 9.5 gigawatts. What is the probability that a randomly selected time jump meets this precision requirement? Daniel suggests that adjusting the mean power output could improve time-travel accuracy. Can adjusting the mean reduce the number of dangerous misjumps? If yes, what should the…arrow_forwardProblem 5 ( Marybeth is also interested in the experiment from Problem 2 (associated with the enhancements for Captain America's shield), so she decides to start a detailed literature review on the subject. Among others, she found a paper where they used a 2"(4-1) fractional factorial design in the factors: (A) shield material, (B) throwing mechanism, (C) edge modification, and (D) handle adjustment. The experimental design used in the paper is shown in the table below. a. Run A B с D 1 (1) -1 -1 -1 1 2 a 1 -1 -1 1 3 bd -1 1 -1 1 4 abd 1 1 -1 1 5 cd -1 -1 1 -1 6 acd 1 -1 1 -1 7 bc -1 1 1 -1 abc 1 1 1 -1 paper? s) What was the generator used in the 2"(4-1) fractional factorial design described in the b. Based on the resolution of this design, what do you think about the generator used in the paper? Do you think it was a good choice, or would you have selected a different one? Explain your answer in detail.arrow_forward
- Suppose we wish to test the hypothesis that women with a sister’s history of breast cancer are at higher risk of developing breast cancer themselves. Suppose we assume that the prevalence rate of breast cancer is 3% among 60- to 64-year-old U.S. women, whereas it is 5% among women with a sister history. We propose to interview 400 women 40 to 64 years of age with a sister history of the disease. What is the power of such a study assuming that the level of significance is 10%? I only need help writing the null and alternative hypotheses.arrow_forward4.96 The breaking strengths for 1-foot-square samples of a particular synthetic fabric are approximately normally distributed with a mean of 2,250 pounds per square inch (psi) and a standard deviation of 10.2 psi. Find the probability of selecting a 1-foot-square sample of material at random that on testing would have a breaking strength in excess of 2,265 psi.4.97 Refer to Exercise 4.96. Suppose that a new synthetic fabric has been developed that may have a different mean breaking strength. A random sample of 15 1-foot sections is obtained, and each section is tested for breaking strength. If we assume that the population standard deviation for the new fabric is identical to that for the old fabric, describe the sampling distribution forybased on random samples of 15 1-foot sections of new fabricarrow_forwardUne Entreprise œuvrant dans le domaine du multividéo donne l'opportunité à ses programmeurs-analystes d'évaluer la performance des cadres supérieurs. Voici les résultats obtenues (sur une échelle de 10 à 50) où 50 représentent une excellente performance. 10 programmeurs furent sélectionnés au hazard pour évaluer deux cadres. Un rapport Excel est également fourni. Programmeurs Cadre A Cadre B 1 34 36 2 32 34 3 18 19 33 38 19 21 21 23 7 35 34 8 20 20 9 34 34 10 36 34 Test d'égalité des espérances: observations pairéesarrow_forward
- A television news channel samples 25 gas stations from its local area and uses the results to estimate the average gas price for the state. What’s wrong with its margin of error?arrow_forwardYou’re fed up with keeping Fido locked inside, so you conduct a mail survey to find out people’s opinions on the new dog barking ordinance in a certain city. Of the 10,000 people who receive surveys, 1,000 respond, and only 80 are in favor of it. You calculate the margin of error to be 1.2 percent. Explain why this reported margin of error is misleading.arrow_forwardYou find out that the dietary scale you use each day is off by a factor of 2 ounces (over — at least that’s what you say!). The margin of error for your scale was plus or minus 0.5 ounces before you found this out. What’s the margin of error now?arrow_forward
- Suppose that Sue and Bill each make a confidence interval out of the same data set, but Sue wants a confidence level of 80 percent compared to Bill’s 90 percent. How do their margins of error compare?arrow_forwardSuppose that you conduct a study twice, and the second time you use four times as many people as you did the first time. How does the change affect your margin of error? (Assume the other components remain constant.)arrow_forwardOut of a sample of 200 babysitters, 70 percent are girls, and 30 percent are guys. What’s the margin of error for the percentage of female babysitters? Assume 95 percent confidence.What’s the margin of error for the percentage of male babysitters? Assume 95 percent confidence.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning



