Statistics for Engineers and Scientists
Statistics for Engineers and Scientists
4th Edition
ISBN: 9780073401331
Author: William Navidi Prof.
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 8.3, Problem 8E

a.

To determine

Construct a linear regression model for the data.

Test whether there is enough evidence to conclude that β0 is zero.

Test whether there is enough evidence to conclude that β1 is zero.

a.

Expert Solution
Check Mark

Answer to Problem 8E

A simple linear regression model for the data is:

y^=2.778181.63031x_.

No, there is not enough evidence to conclude that β0 is zero.

No, there is not enough evidence to conclude that β1 is zero.

Explanation of Solution

Given info:

The data represents the values of the variables amount of deflection in mm (y) and distance in m (x).

Calculation:

Linear regression model:

A linear regression model is given as y^=b0+b1x where y^ be the predicted values of response variable and x be the predictor variable. b1 be the slope and b0 be the intercept of the line.

A linear regression model is given as y^=β^0+β^1x where y^ be the predicted values of response variable and x be the predictor variable. The β^1 be the estimate of slope and β^0 be the estimate of intercept of the line.

Regression:

Software procedure:

Step by step procedure to obtain regression using MINITAB software is given as,

  • Choose Stat > Regression > General Regression.
  • In Response, enter the numeric column containing the response data Y.
  • In Model, enter the numeric column containing the predictor variables X.
  • Click OK.

Output obtained from MINITAB is given below:

Statistics for Engineers and Scientists, Chapter 8.3, Problem 8E , additional homework tip  1

The ‘Coefficient’ column of the regression analysis MINITAB output gives the slopes corresponding to the respective variables stored in the column ‘Term’.

A careful inspection of the output shows that the fitted model is:

y^=2.778181.63031x.

Hence, the linear regression model for the data is:

y^=2.778181.63031x_.

Test for slope coefficient β0:

The test hypotheses are given below:

Null hypothesis:

 H0:β0=0

That is, intercept of the regression model is not significant.

Alternative hypothesis:

 Ha:β00

That is, intercept of the regression model is significant.

Level of significance:

Since, the level of significance is not given. The prior level of significance α=0.05 can be used.

The ‘P’ column of the regression analysis MINITAB output gives the P- value corresponding to the respective variables stored in the column ‘Term’.

The P- value corresponding to the coefficient β0 is 0.000.

Decision criteria based on P-value approach:

If P-valueα, then reject the null hypothesis H0.

If P-value>α, then fail to reject the null hypothesis H0.

Conclusion:

The P-value is 0.000 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.013(=P)<0.05(=α).

By the rejection rule, reject the null hypothesis.

Therefore, intercept of the regression model is significant.

Thus, there is not enough evidence to conclude that β0 is zero.

Test for slope coefficient β1:

The test hypotheses are given below:

Null hypothesis:

 H0:β1=0

That is, slope coefficient of the predictor variable distance is not significant.

Alternative hypothesis:

 Ha:β10

That is, slope coefficient of the predictor variable distance is significant.

From the MINITAB output, the P- value corresponding to the coefficient β1 is 0.001.

Conclusion:

The P-value is 0.001 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.001(=P)<0.05(=α).

By the rejection rule, reject the null hypothesis.

Therefore, the slope coefficient of the predictor variable distance is significant.

Thus, there is not enough evidence to conclude that β1 is zero.

b.

To determine

Construct a quadratic regression model for the data.

Test whether there is enough evidence to conclude that β0 is zero.

Test whether there is enough evidence to conclude that β1 is zero.

Test whether there is enough evidence to conclude that β2 is zero.

b.

Expert Solution
Check Mark

Answer to Problem 8E

The quadratic regression model for the data is y^=3.257433.51514x+1.03002x2_.

No, there is not enough evidence to conclude that β0 is zero.

No, there is not enough evidence to conclude that β1 is zero.

Yes, there is enough evidence to conclude that β2 is zero.

Explanation of Solution

Calculation:

Quadratic model:

The quadratic regression model would be of the form:

y^=β^0+β^1x+β^2x2

Regression:

Software procedure:

Step by step procedure to obtain quadratic regression model using MINITAB software is given as,

  • Choose Stat > Regression > General Regression.
  • In Response, enter the numeric column containing the response data Y.
  • In Model, enter the numeric column containing the predictor variables X and X-square.
  • Click OK.

Output obtained from MINITAB is given below:

Statistics for Engineers and Scientists, Chapter 8.3, Problem 8E , additional homework tip  2

The ‘Coefficient’ column of the regression analysis MINITAB output gives the slopes corresponding to the respective variables stored in the column ‘Predictor’.

A careful inspection of the output shows that the fitted model is:

y^=3.257433.51514x+1.03002x2.

Hence, the quadratic regression model for the data is:

y^=3.257433.51514x+1.03002x2_.

Test for slope coefficient β0:

The test hypotheses are given below:

Null hypothesis:

 H0:β0=0

That is, intercept of the regression model is not significant.

Alternative hypothesis:

 Ha:β00

That is, intercept of the regression model is significant.

Level of significance:

Since, the level of significance is not given. The prior level of significance α=0.05 can be used.

The ‘P’ column of the regression analysis MINITAB output gives the P- value corresponding to the respective variables stored in the column ‘Term’.

The P- value corresponding to the coefficient β0 is 0.000.

Decision criteria based on P-value approach:

If P-valueα, then reject the null hypothesis H0.

If P-value>α, then fail to reject the null hypothesis H0.

Conclusion:

The P-value is 0.000 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.000(=P)<0.05(=α).

By the rejection rule, fail to reject the null hypothesis.

Therefore, intercept of the regression model is significant.

Thus, there is not enough evidence to conclude that β0 is zero.

Test for slope coefficient β1:

The test hypotheses are given below:

Null hypothesis:

 H0:β1=0

That is, coefficient of the predictor variable distance is not significant.

Alternative hypothesis:

 Ha:β10

That is, coefficient of the predictor variable distance is significant.

From the MINITAB output, the P- value corresponding to the coefficient β1 is 0.000.

Conclusion:

The P-value is 0.000 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.000(=P)<0.05(=α).

By the rejection rule, fail to reject the null hypothesis.

Therefore, coefficient of the predictor variable distance is significant.

Thus, there is not enough evidence to conclude that β1 is zero.

Test for slope coefficient β2:

The test hypotheses are given below:

Null hypothesis:

 H0:β2=0

That is, coefficient of the predictor variable distance square is not significant.

Alternative hypothesis:

 Ha:β20

That is, coefficient of the predictor variable distance square is significant.

From the MINITAB output, the P- value corresponding to the coefficient β2 is 0.000.

Conclusion:

The P-value is 0.000 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.000(=P)<0.05(=α).

By the rejection rule, fail to reject the null hypothesis.

Therefore, the coefficient of the predictor variable distance square is significant.

Thus, there is not enough evidence to conclude that β2 is zero.

c.

To determine

Construct a cubic regression model for the data.

Test whether there is enough evidence to conclude that β0 is zero.

Test whether there is enough evidence to conclude that β1 is zero.

Test whether there is enough evidence to conclude that β2 is zero.

Test whether there is enough evidence to conclude that β3 is zero.

c.

Expert Solution
Check Mark

Answer to Problem 8E

The quadratic regression model for the data is y^=3.273903.69506x+1.29550x20.09672x3_.

No, there is enough evidence to conclude that β0 is zero.

No, there is enough evidence to conclude that β1 is zero.

Yes, there is enough evidence to conclude that β2 is zero.

Yes, there is enough evidence to conclude that β3 is zero.

Explanation of Solution

Calculation:

Cubic model:

The cubic regression model would be of the form:

y^=β^0+β^1x+β^2x2+β^3x3

Regression:

Software procedure:

Step by step procedure to obtain cubic regression model using MINITAB software is given as,

  • Choose Stat > Regression > General Regression.
  • In Response, enter the numeric column containing the response data Y.
  • In Model, enter the numeric column containing the predictor variables X, X-square and X-cube.
  • Click OK.

Output obtained from MINITAB is given below:

Statistics for Engineers and Scientists, Chapter 8.3, Problem 8E , additional homework tip  3

The ‘Coefficient’ column of the regression analysis MINITAB output gives the slopes corresponding to the respective variables stored in the column ‘Predictor’.

A careful inspection of the output shows that the fitted model is:

y^=3.273903.69506x+1.29550x20.09672x3.

Hence, the cubic regression model for the data is:

y^=3.273903.69506x+1.29550x20.09672x3_.

Test for slope coefficient β0:

The test hypotheses are given below:

Null hypothesis:

 H0:β0=0

That is, intercept of the regression model is not significant.

Alternative hypothesis:

 Ha:β00

That is, intercept of the regression model is significant.

Level of significance:

Since, the level of significance is not given. The prior level of significance α=0.05 can be used.

The ‘P’ column of the regression analysis MINITAB output gives the P- value corresponding to the respective variables stored in the column ‘Term’.

The P- value corresponding to the coefficient β0 is 0.000.

Decision criteria based on P-value approach:

If P-valueα, then reject the null hypothesis H0.

If P-value>α, then fail to reject the null hypothesis H0.

Conclusion:

The P-value is 0.000 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.000(=P)<0.05(=α).

By the rejection rule, reject the null hypothesis.

Therefore, intercept of the regression model is significant.

Thus, there is not enough evidence to conclude that β0 is zero.

Test for slope coefficient β1:

The test hypotheses are given below:

Null hypothesis:

 H0:β1=0

That is, coefficient of the predictor variable distance is not significant.

Alternative hypothesis:

 Ha:β10

That is, coefficient of the predictor variable distance is significant.

From the MINITAB output, the P- value corresponding to the coefficient β1 is 0.002.

Conclusion:

The P-value is 0.002 and α value is 0.05.

Here, P-value is less than the α value.

That is 0.002(=P)<0.05(=α).

By the rejection rule, reject the null hypothesis.

Therefore, coefficient of the predictor variable distance is significant.

Thus, there is not enough evidence to conclude that β1 is zero.

Test for slope coefficient β2:

The test hypotheses are given below:

Null hypothesis:

 H0:β2=0

That is, coefficient of the predictor variable distance square is not significant.

Alternative hypothesis:

 Ha:β20

That is, coefficient of the predictor variable distance square is significant.

From the MINITAB output, the P- value corresponding to the coefficient β2 is 0.081.

Conclusion:

The P-value is 0.081 and α value is 0.05.

Here, P-value is greater than the α value.

That is 0.081(=P)>0.05(=α).

By the rejection rule, fail to reject the null hypothesis.

Therefore, the coefficient of the predictor variable distance square is not significant.

Thus, there is enough evidence to conclude that β2 is zero.

Test for slope coefficient β3:

The test hypotheses are given below:

Null hypothesis:

 H0:β3=0

That is, coefficient of the predictor variable distance cube is not significant.

Alternative hypothesis:

 Ha:β30

That is, coefficient of the predictor variable distance cube is significant.

From the MINITAB output, the P- value corresponding to the coefficient β3 is 0627.

Conclusion:

The P-value is 0.627 and α value is 0.05.

Here, P-value is greater than the α value.

That is 0.627(=P)>0.05(=α).

By the rejection rule, fail to reject the null hypothesis.

Therefore, the coefficient of the predictor variable distance cube is not significant.

Thus, there is enough evidence to conclude that β3 is zero.

d.

To determine

Find the best model among the three models obtained in part (a), part (b) and part (c).

d.

Expert Solution
Check Mark

Answer to Problem 8E

The model obtained in part (b) is the best model compared to the other two models in part (a) and part (c).

Explanation of Solution

Calculation:

In the model obtained in part (b), all the coefficients of the model are significantly different from zero.

The coefficient of determination is higher for the model obtained in part (b), than for the model obtained in part (a).

That is, 0.9976>0.8975.

There is not much difference in the coefficient of determination for the model obtained in part (b) and part (c).

That is, 0.9976% and 0.9978% are not much distinct.

Increasing the number of predictors in an analysis increases the complexity of analysis. An investigator usually does not wish to increase the complications of analysis for such a small increase in R2.

Thus, the model obtained in part (b) is the best model compared to the other two models in part (a) and part (c).

e.

To determine

Estimate the amount of deflection at a distance of 1m using the most appropriate method.

e.

Expert Solution
Check Mark

Answer to Problem 8E

The estimate of the amount of deflection at a distance of 1m is 0.77231mm.

Explanation of Solution

Calculation:

The quadratic model is the most appropriate regression model among the obtained three models.

The quadratic regression model is, y^=3.257433.51514x+1.03002x2

Here, x=1m.

Estimate of amount of deflection:

y^=3.257433.51514x+1.03002x2=3.25743(3.51514×1)+(1.03002×12)=0.77231

Thus, the estimate of the amount of deflection at a distance of 1m is 0.77231mm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The article "Influence of Freezing Temperature on Hydraulic Conductivity of Silty Clay" (J. Konrad and M. Samson, Journal of Geotechnical and Geoenvironmental Engineering, 2000:180–187) describes a study of factors affecting hydraulic conductivity of soils. The measurements of hydraulic conductivity in units of 108 cm/s (y), initial void ratio (x), and thawed void ratio (x2) for 12 specimens of silty clay are presented in the following table. y 1.01 1.12 1.04 1.30 1.01 1.04 0.955 1.15 1.23 1.28 1.23 1.30 0.84 0.88 0.85 0.95 0.88 0.86 0.85 0.89 0.90 0.94 0.88 0.90 X1 0.81 0.85 0.87 0.92 0.84 0.85 0.85 0.86 0.85 0.92 0.88 0.92 X2 Fit the model y = Bo + fix1 + e. For each coefficient, test the null hypothesis that it is equal to 0. Fit the model y = Bo + Bzx2 + e. For each coefficient, test the null hypothesis that it is equal to 0. Fit the model y = Bo + BzX1 + Bzxz + e. For each coefficient, test the null hypothesis that it is equal to 0. d. Which of the models in parts (a) to (c) is…
The article "Effect of Granular Subbase Thickness on Airfield Pavement Structural Response" (K. Gopalakrishnan and M. Thompson, Journal of Materials in Civil Engineering, 2008:331-342) presents a study of the amount of surface deflection caused by aircraft landing on an airport runway. A load of 160 kN was applied to a runway surface, and the amount of deflection in mm (y) was measured at various distances in m (x) from the point of application. The results are presented in the following table. y 0.000 3.24 0.305 2.36 0.610 1.42 0.914 0.87 1.219 0.54 1.524 0.34 1.830 0.24 a. Fit the linear model y = Bo + B1x + ɛ. For each coefficient, test the hypothesis that the coefficient is equal to 0. b. Fit the quadratic model y = Bo + Bịx + B2x² + ɛ. For each coefficient, test the hypothesis that the coefficient is equal to 0. %3D Fit the cubic model y = Bo + B1x + B2x? + B3x + E. For each coefficient, test the C. hypothesis that the coefficient is equal to 0. d. Which of the models in parts (a)…
The article "Modeling Resilient Modulus and Temperature Correction for Saudi Roads" (H. Wahhab, I. Asi, and R. Ramadhan, Journal of Materials in Civil Engineering, 2001:298– 305) describes a study designed to predict the resilient modulus of pavement from physical properties. The following table presents data for the resilient modulus at 40°Cin10® kPa (y), the surface area of the aggregate in m²/kg (x1), and the softening point of the asphalt in °C (х). y X1 X2 1.48 5.77 60.5 1.70 7.45 74.2 2.03 8.14 67.6 2.86 8.73 70.0 2.43 7.12 64.6 3.06 6.89 65.3 2.44 8.64 66.2 1.29 6.58 64.1 3.53 9.10 68.6 1.04 8.06 58.8 1.88 5.93 63.2 1.90 8.17 62.1 1.76 9.84 68.9 2.82 7.17 72.2 1.00 7.78 54.1 The full quadratic model is y = + P,x, + PzX, + Pz*jXz + Pxx¡ + Bzx; + €. Which submodel of this full model do you believe is most appropriate? Justify your answer by fitting two or more models and comparing the results.

Chapter 8 Solutions

Statistics for Engineers and Scientists

Ch. 8.1 - Prob. 11ECh. 8.1 - The following MINITAB output is for a multiple...Ch. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - The following data were collected in an experiment...Ch. 8.1 - The November 24, 2001, issue of The Economist...Ch. 8.1 - The article Multiple Linear Regression for Lake...Ch. 8.1 - Prob. 19ECh. 8.2 - In an experiment to determine factors related to...Ch. 8.2 - In a laboratory test of a new engine design, the...Ch. 8.2 - In a laboratory test of a new engine design, the...Ch. 8.2 - The article Influence of Freezing Temperature on...Ch. 8.2 - The article Influence of Freezing Temperature on...Ch. 8.2 - The article Influence of Freezing Temperature on...Ch. 8.3 - True or false: a. For any set of data, there is...Ch. 8.3 - The article Experimental Design Approach for the...Ch. 8.3 - Prob. 3ECh. 8.3 - An engineer measures a dependent variable y and...Ch. 8.3 - Prob. 5ECh. 8.3 - The following MINITAB output is for a best subsets...Ch. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - (Continues Exercise 7 in Section 8.1.) To try to...Ch. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - The article Ultimate Load Analysis of Plate...Ch. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - The article Modeling Resilient Modulus and...Ch. 8.3 - The article Models for Assessing Hoisting Times of...Ch. 8 - The article Advances in Oxygen Equivalence...Ch. 8 - Prob. 2SECh. 8 - Prob. 3SECh. 8 - Prob. 4SECh. 8 - In a simulation of 30 mobile computer networks,...Ch. 8 - The data in Table SE6 (page 649) consist of yield...Ch. 8 - Prob. 7SECh. 8 - Prob. 8SECh. 8 - Refer to Exercise 2 in Section 8.2. a. Using each...Ch. 8 - Prob. 10SECh. 8 - The data presented in the following table give the...Ch. 8 - The article Enthalpies and Entropies of Transfer...Ch. 8 - Prob. 13SECh. 8 - Prob. 14SECh. 8 - The article Measurements of the Thermal...Ch. 8 - The article Electrical Impedance Variation with...Ch. 8 - The article Groundwater Electromagnetic Imaging in...Ch. 8 - Prob. 18SECh. 8 - Prob. 19SECh. 8 - Prob. 20SECh. 8 - Prob. 21SECh. 8 - Prob. 22SECh. 8 - The article Estimating Resource Requirements at...Ch. 8 - Prob. 24SE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License