Physics of Everyday Phenomena
Physics of Everyday Phenomena
9th Edition
ISBN: 9781260048469
Author: Griffith
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 17E

A uniform disk with a mass of 7 kg and a radius of 0.4 m is rotating with a rotational velocity of 15 rad/s.

  1. a. What is the rotational inertia of the disk? (See fig. 8.15.)
  2. b. What is the angular momentum of the disk?
Blurred answer
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of nitrogen at a pressure of 1.83×105 Pa and a temperature of 290 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. Part A Compute the temperature at the beginning of the adiabatic expansion. Express your answer in kelvins. ΕΠΙ ΑΣΦ T₁ = ? K Submit Request Answer Part B Compute the temperature at the end of the adiabatic expansion. Express your answer in kelvins. Π ΑΣΦ T₂ = Submit Request Answer Part C Compute the minimum pressure. Express your answer in pascals. ΕΠΙ ΑΣΦ P = Submit Request Answer ? ? K Pa
Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. Τ One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…
Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…

Chapter 8 Solutions

Physics of Everyday Phenomena

Ch. 8 - The two forces in the diagram have the same...Ch. 8 - Is it possible to balance two objects of different...Ch. 8 - Is it possible for the net force acting on an...Ch. 8 - You are trying to move a large rock using a steel...Ch. 8 - Prob. 15CQCh. 8 - Prob. 16CQCh. 8 - Prob. 17CQCh. 8 - An object is rotating with a constant rotational...Ch. 8 - A tall crate has a higher center of gravity than a...Ch. 8 - Two objects have the same total mass, but object A...Ch. 8 - Is it possible for two objects with the same mass...Ch. 8 - Can you change your rotational inertia about a...Ch. 8 - A solid sphere and a hollow sphere made from...Ch. 8 - Is angular momentum always conserved? Explain.Ch. 8 - A metal rod is rotated first about an axis through...Ch. 8 - A child on a freely rotating merry-go-round moves...Ch. 8 - Moving straight inward, a large child jumps onto a...Ch. 8 - Is it possible for an ice skater to change his...Ch. 8 - Suppose you are rotating a ball attached to a...Ch. 8 - Does the direction of the angular-momentum vector...Ch. 8 - Does the direction of the angular momentum vector...Ch. 8 - Can a yo-yo be made to sleep if the string is tied...Ch. 8 - An ice skater is spinning counterclockwise about a...Ch. 8 - A pencil, balanced vertically on its eraser, falls...Ch. 8 - A top falls over quickly if it is not spinning,...Ch. 8 - When we shift gears on the rear-wheel gear of a...Ch. 8 - In what foot position do we exert maximum torque...Ch. 8 - If we move the chain to a larger sprocket on the...Ch. 8 - Suppose a merry-go-round is rotating at the rate...Ch. 8 - When one of the authors was a teenager, the rate...Ch. 8 - Suppose a disk rotates through eight revolutions...Ch. 8 - The rotational velocity of a merry-go-round...Ch. 8 - A bicycle wheel is rotationally accelerated at the...Ch. 8 - The rotational velocity of a spinning disk...Ch. 8 - Starting from rest, a merry-go-round accelerates...Ch. 8 - A force of 60 N is applied at the end of a wrench...Ch. 8 - A weight of 40 N is located a distance of 8 cm...Ch. 8 - A weight of 8 N is located 12 cm from the fulcrum...Ch. 8 - Two forces are applied to a merry-go-round with a...Ch. 8 - A net torque of 93.5 Nm is applied to a disk with...Ch. 8 - A wheel with a rotational inertia of 8.3 kgm2...Ch. 8 - A torque of 76 Nm producing a counterclockwise...Ch. 8 - Two 0.3-kg masses are located at either end of a...Ch. 8 - A mass of 0.75 kg is located at the end of a very...Ch. 8 - A uniform disk with a mass of 7 kg and a radius of...Ch. 8 - A student, sitting on a stool holds masses in each...Ch. 8 - A merry-go-round in the park has a radius of 1.5 m...Ch. 8 - Prob. 2SPCh. 8 - In the park, several children (having a total mass...Ch. 8 - A student sitting on a stool that is free to...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY