
A student sitting on a stool that is free to rotate, but is initially at rest, holds a bicycle wheel. The wheel has a rotational velocity of 8 rev/s about a vertical axis, as shown in the SP4 diagram. The rotational inertia of the wheel is 2.5 kg·m2 about its center, and the rotational inertia of the student and wheel and stool about the rotational axis of the stool is 6 kg·m2.
- a. What is the rotational velocity of the wheel in rad/s?
- b. What are the magnitude and direction of the initial
angular momentum of the system? - c. If the student flips the axis of the wheel, reversing the direction of its angular-momentum vector, what is the rotational velocity (magnitude and direction) of the student and the stool about their axis after the wheel is flipped? (Hint: See fig. 8.24.)
- d. Where does the torque come from that accelerates the student and the stool? Explain.
(a)

The rotational velocity of the wheel in
Answer to Problem 4SP
The rotational velocity of the wheel is
Explanation of Solution
Given info: The rotational velocity is
Write the expression for conversion relation connecting
Convert
Conclusion:
Therefore, the rotational velocity of the wheel is
(b)

The magnitude and the direction of the initial angular momentum of the system.
Answer to Problem 4SP
The angular momentum of the system is
Explanation of Solution
Write the expression for the angular momentum.
Here,
Substitute
Conclusion:
Therefore, the angular momentum of the system is
(c)

The rotational velocity of the student and the stool about their axis after the wheel is flipped.
Answer to Problem 4SP
The rotational velocity of the student and the stool about their axis is
Explanation of Solution
From the conservation of angular momentum, the angular velocity of the student and the stool is,
Here,
Rewrite the relation of the angular momentum then rearrange it for the rotational velocity of the student and the stool.
Rewrite the relation for the rotational velocity of the student and the stool.
Substitute
The direction of the rotational velocity of the student and the stool would be the direction of initial rotational velocity direction of the wheel.
Conclusion:
Therefore, the rotational velocity of the student and the stool about their axis is
(d)

Where will be the torque come from that accelerates the student and the stool.
Answer to Problem 4SP
The student exerts forces on the handles when he flips the wheel.
Explanation of Solution
For the flip of the wheel, the student exerts a certain amount force which creates the torque on the wheel then this torque produce the equal amount of opposite torque on the student and the stool. This happens for the system to be conserved.
Conclusion:
Therefore, the student exerts forces on the handles when he flips the wheel.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics of Everyday Phenomena
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





