A merry-go-round in the park has a radius of 1.5 m and a rotational inertia of 800 kg·m2. A child pushes the merry-go-round with a constant force of 92 N applied at the edge and parallel to the edge. A frictional torque of 14 N·m acts at the axle of the merry-go-round.
- a. What is the net torque acting on the merry-go-round about its axle?
- b. What is the rotational acceleration of the merry-go-round?
- c. At this rate, what will the rotational velocity of the merry-go-round be after 16 s if it starts from rest?
- d. If the child stops pushing after 16 s, the net torque is now due solely to the friction. What then is the rotational acceleration of the merry-go-round? How long will it take for the merry-go-round to stop turning?
(a)
The net torque acting on the merry –go-round about its axle.
Answer to Problem 1SP
The net torque acting on the merry-go-round is
Explanation of Solution
Given info: Radius is
Write the expression for the net torque.
Here,
Substitute
The net torque acting on the merry-go round is given by subtracting from the frictional torque.
Conclusion:
Therefore, the net torque acting on the merry-go-round is
(b)
The rotational acceleration of the merry-go-round.
Answer to Problem 1SP
The rotational acceleration of the merry-go-round is
Explanation of Solution
Write the expression for the rotational acceleration.
Here,
Substitute
Conclusion:
Therefore, the rotational acceleration of the merry-go-round is
(c)
The rotational velocity of the merry-go-round after
Answer to Problem 1SP
The rotational velocity of the merry-go-round will be
Explanation of Solution
Write the expression for the rotational velocity.
Here,
Substitute
Conclusion:
Therefore, the rotational velocity of the merry-go-round will be
(d)
Rotational acceleration of the merry-go-round and the time taken for the merry-go-round to stop running.
Answer to Problem 1SP
The rotational acceleration will be
Explanation of Solution
The net torque is only due to the friction.
Write the expression for the rotational acceleration.
Substitute
Write the expression for the rotational velocity.
Rearrange the above equation to find
Substitute
Conclusion:
Therefore, rotational acceleration will be
Want to see more full solutions like this?
Chapter 8 Solutions
Physics of Everyday Phenomena
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning