To solve The system of linear equations by using the Cramer’s rule.
The solution of the given system of equations are ( − 1 , 2 ) .
The given system of equations are { 4 x − 3 y = − 10 6 x + 9 y = 12 .
Formula used:
If { a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 represents the system of equations then the value of x and y are calculated as x = c 1 b 2 − c 2 b 1 a 1 b 2 − a 2 b 1 = | c 1 b 1 c 2 b 2 | | a 1 b 1 a 2 b 2 | and y = a 1 c 2 − a 2 c 1 a 1 b 2 − a 2 b 1 = | a 1 c 1 a 2 c 2 | | a 1 b 1 a 2 b 2 | .
Calculation:
Compute the determinant of the matrix as follows,
D = [ 4 − 3 6 9 ] = ( 4 ) ( 9 ) − ( − 3 ) ( 6 ) = 36 + 18 = 54
As the determinant of the equation is nonzero, so the solution of the equations exist.
Compute the value of x and y as follows,
x = | − 10 − 3 12 9 | 54 = − 10 ⋅ 9 − ( − 3 ) ( 12 ) 54 = − 1
Compute the value of y as follows,
y = | 4 − 10 6 12 | 54 = 4 ( 12 ) + 10 ( 6 ) 54 = 2
Substitute the obtained values in the equations 4 x − 3 y = − 10 ..
4 ( − 1 ) − 3 ( 2 ) = − 10 − 4 − 6 = − 10 − 10 = − 10
Substitute the obtained value in the second equation 6 x + 9 y = 12 as follows,
6 ( − 1 ) + 9 ( 2 ) = 12 − 6 + 18 = 12 12 = 12
Hence, the obtained solution are correct.
Therefore, the solution of the given system of equations are ( − 1 , 2 ) .
The solution of the given system of equations are
The given system of equations are
Formula used:
If
Calculation:
Compute the determinant of the matrix as follows,
As the determinant of the equation is nonzero, so the solution of the equations exist.
Compute the value of x and y as follows,
Compute the value of y as follows,
Substitute the obtained values in the equations
Substitute the obtained value in the second equation
Hence, the obtained solution are correct.
Therefore, the solution of the given system of equations are

Answer to Problem 25E
The solution of the given system of equations are
Explanation of Solution
The given system of equations are
Formula used:
If
Calculation:
Compute the determinant of the matrix as follows,
As the determinant of the equation is nonzero, so the solution of the equations exist.
Compute the value of x and y as follows,
Compute the value of y as follows,
Substitute the obtained values in the equations
Substitute the obtained value in the second equation
Hence, the obtained solution are correct.
Therefore, the solution of the given system of equations are
Chapter 7 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Force with 800 N and 400 N are acting on a machine part at 30° and 60°, respectively with a positive x axis, Draw the diagram representing this situationarrow_forwardI forgot to mention to you to solve question 1 and 2. Can you solve it using all data that given in the pict i given and can you teach me about that.arrow_forwardexam review please help!arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





