
(a)
Find the tensile stress in the steel ring.
(a)

Answer to Problem 126P
The tensile stress in the steel ring is
Explanation of Solution
Given information:
Steel Ring:
The thickness
The Young’s modulus
The coefficient of thermal expansion
Brass Ring:
The thickness
The Young’s modulus
The coefficient of thermal expansion
Consider the strain in the steel ring and the brass ring due to tensile stress are denoted by
Consider the strain in the steel ring and the brass ring due to temperature stress are denoted by
Consider the total strain in the steel ring and the brass ring are denoted by
Consider the internal pressure in the steel ring is denoted by p.
Consider the external pressure in the steel ring is same as p.
The initial and final temperature of the ring are
Calculation:
Calculate the change in the temperature
Calculate the mean radius (r) of the ring as follows:
Substitute
Consider the tensile stress in the steel ring in the brass ring and the steel ring is denoted by
Calculate the total strain in the steel ring using the relation:
Calculate the change in length of circumference of the steel ring
Calculate the total strain in the steel ring using the relation:
Calculate the change in length of circumference of the steel ring
Equate Equation (1) and (2).
Substitute
Calculate the tensile stress in the steel ring using the relation:
Substitute
Thus, the tensile stress in the steel ring is
(b)
Find the pressure exerted by the brass ring on the steel ring.
(b)

Answer to Problem 126P
The pressure exerted by the brass ring on the steel ring is
Explanation of Solution
Refer part (a);
Get the value of the pressure exerted by the brass ring on the steel ring as
Thus, the external pressure on the brass ring is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK MECHANICS OF MATERIALS
- (read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forwardT₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward
- 2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward3. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. 8x2y" +10xy' + (x 1)y = 0 -arrow_forward
- Hello I was going over the solution for this probem and I'm a bit confused on the last part. Can you please explain to me 1^4 was used for the Co of the tubular cross section? Thank you!arrow_forwardBlood (HD = 0.45 in large diameter tubes) is forced through hollow fiber tubes that are 20 µm in diameter.Equating the volumetric flowrate expressions from (1) assuming marginal zone theory and (2) using an apparentviscosity for the blood, estimate the marginal zone thickness at this diameter. The viscosity of plasma is 1.2 cParrow_forwardQ2: Find the shear load on bolt A for the connection shown in Figure 2. Dimensions are in mm Fig. 2 24 0-0 0-0 A 180kN (10 Markarrow_forward
- determine the direction and magnitude of angular velocity ω3 of link CD in the four-bar linkage using the relative velocity graphical methodarrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





