The total work produced by the turbine.
The total heat transferred to the air in the tank during the discharge.
Answer to Problem 200RP
The total work produced by the turbine is
The total heat transferred to the air in the tank during the discharge is
Explanation of Solution
Refer to Table A-2Ea, obtain the properties of air at room temperature.
Calculate the initial mass of air in the tank.
Here, pressure and temperature at initial state is
Calculate the final mass of air in the tank.
Here, pressure and temperature at final state is
Express the mass at any time.
Differentiate Equation (III) with respect to temperature.
Since the compressor operates as an isentropic device, express the temperature at state 4.
Here, temperature at state 3 is
Express the conservation of mass applied to the tank.
Here, change of mass is
Calculate the total power produced by the turbine after applied the first law.
Here, specific enthalpy at state 3 and 4 is
Substitute
Integrate Equation (V).
Calculate the total heat transferred to the air in the tank during the discharge.
Here, mass at initial and final state is
Conclusion:
Substitute 1 atm for
Substitute 10 atm for
Substitute
Thus, the total work produced by the turbine is
Substitute
Thus, the total heat transferred to the air in the tank during the discharge is
Want to see more full solutions like this?
Chapter 7 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- Determine the change in entropy (BTU/R) in an isothermal process having an initial volume of 18 cu ft and a final volume of 46 cu ft. The mass is 58 lb and the specific heat is 0.24 BTU/b-Rarrow_forwardWater vapor enters a turbine with a mass flow rate of 3 kg/s, and at a temperature and pressure of 500°C and 1 MPa, respectively. The heat loss inside the turbine is 250 kW and the steam leaves the turbine at a temperature and pressure of 150°C and 100 kPa. Neglect any changes in the velocity or the elevation. The work output of the turbine is used to operate a heat pump whose COP value is 2. Determine the rate of heat removal from the sink (1) and the rate of heat rejection to the source (2) of this heat pump. a. 3715 kW (removal), 1857.5 kW (rejection) b. 1857.5 kW (removal), 3500 kW (rejection) c. 1857.5 kW (removal), 3715 kW (rejection) d. 1500 kW (removal), 3715 kW (rejection)arrow_forwardAn adiabatic capillary tube is used in some refrigeration systems to drop the pressure of the refrigerant from the condenser level to the evaporator level. R-134a enters the capillary tube as a saturated liquid at 70C, and leaves at -20C. Determine the rate of entropy generation in the capillary tube for a mass flow rate of 0.2 kg/s.arrow_forward
- Help me plsarrow_forwardSteam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500oC, and 80 m/s, and the exit conditions are 30 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 14 kg/s. Determine the power output.arrow_forwardSteam at 1000 kPa, a temperature of 300°C, and a velocity of 50 m/s. The steam leaves the turbine at a pressure of 150 kPa and a velocity of 200 m/s. Determine the work per kg of steam flowing through the turbine, assuming the process to be reversible and adiabatic.arrow_forward
- Air (MW=29 g/mol) at 115.00 kPa and 285.00 is compressed steadily to 600.0 kPa. The mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C, and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60,calculate the following. What is the actual work interaction term in kW? What is the actual exit temperature of the air in Celcius?arrow_forwardSteam in an adiabatic turbine expands from a pressure of 6 MPa and a temperature of 300 °C to a pressure of 0.1 MPa, with a flow rate of 3 kg/s. If Steam leaves the turbine as saturated steam, what is the turbine's power output? last 2 minarrow_forwardQ: Five hundred kilograms per hour of steam drives a turbine. The steam enters the turbine at 44 atm and 450°C at a linear velocity of 60 m/s and leaves at a point 5 m below the turbine inlet at atmospheric pressure and a velocity of 360 m/s. The turbine delivers shaft work at a rate of 70 kW, and the heat loss from the turbine is estimated to be 10ʻ kcal/h. Calculate the specific enthalpy change associated with the process.arrow_forward
- Air enters the evaporator section of a window air conditioner at 100 kPa and 27°C with a volume flow rate of 6 m3 /min. The refrigerant-134a at 120 kPa with a quality of 0.3 enters the evaporator at a rate of 2 kg/min and leaves as saturated vapor at the same pressure. Determine the exit temperature of the air and the rate of entropy generation for this process, assuming heat is transferred to the evaporator of the air conditioner from the surrounding medium at 32°C at a rate of 30 kJ/min.arrow_forwardAir at 17 oC is compressed steadily in an adiabatic compressor from 100 kPa to 680 kPa. If the minimum power consumption of this compressor is 7 kW, determine the mass flow rate to run the compressor considering the variation of specific heats with temperature. Note: Do NOT perform interpolation, take the closest value.arrow_forwardHelium is to be compressed from 120 kPa and 310 K to 700 kPa and 430 K. A heat loss of 20 kJ/kg occurs during the compression process. Neglecting kinetic energy changes, determine the power input required for a mass flow rate of 90 kg/min.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY