CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.13, Problem 18P
A completely reversible air conditioner provides 36,000 Btu/h of cooling for a space maintained at 70°F while rejecting heat to the environmental air at 110°F. Calculate the rate at which the entropies of the two reservoirs change and verify that this air conditioner satisfies the increase of entropy principle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refrigerant 134a enters an air-cooled condenser at 12 bars and 60°C, and leaves as a
saturated liquid at 12 bars. Atmospheric air at 35°C is blown over the condenser tubes
and leaves at 45°C. The heat transfer between the two fluid streams equals 25 MJ/h.
Changes in kinetic and potential energy are negligible. Make any reasonable assumptions
if necessary. Determine
(a) the mass flow rates for the R-134a and the air, in kg/h,
Hint: Use the energy conservation on each of the { uid streams separately.
(b) the entropy production rate in the condenser, in kJ h-'K-1,
Hint: Use the entropy balance over the whole condenser.
(c) the change in kinetic energy for R-134a if the pipe diameter is 2.0 cm, in kJ/h
(d) Draw the T-s diagram for the process for R-134a.
Air
P=1 atm
T3= 35°C
%3!
Ref
rant 134a
R-134a
P = 12 bar
2
T
= 60°C
R-134a
P2 = 12 bar
Air
4-
T4= 45°C
A carnot cycle is conducted using air contained in a cylinder -piston configuration. Initially, the system contains air at 25 degC, 100 kPa and 0.01 m3. You may designate this as state 1. The system is first compressed isothermally until the volume is 0.002m3. From that point, the system undergoes a polytropic compression process with exponent y=1.4 until the volume further reduces to 0.001m3. After that the system undergoes an isothermal expansion process afterwhich, the system is subjected to an adiabatic expansion process until the system reaches the initial state completing a cycle.Determine the maximum P and T in the cycle, the net work of the cycle, heat input, heat rejected, the cycle efficiency (in %) and the mean effective pressure.
A Carnot engine produces 1000J of work per cycle and operates between a hot
reservoir with T2-881.1 K and a cold reservoir with T₁-384.1 K. Calculate the
entropy change AS of the hot reservoir per cycle. Provide your answer in Joules
per Kelvin (J/K). Positive if it increased negative if it decreased.
Chapter 7 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 7.13 - Does a cycle for which Q 0 violate the Clausius...Ch. 7.13 - Does the cyclic integral of heat have to be zero...Ch. 7.13 - Is a quantity whose cyclic integral is zero...Ch. 7.13 - Prob. 4PCh. 7.13 - Prob. 5PCh. 7.13 - How do the values of the integral 12Q/T compare...Ch. 7.13 - Prob. 7PCh. 7.13 - The entropy of a hot baked potato decreases as it...Ch. 7.13 - When a system is adiabatic, what can be said about...Ch. 7.13 - Prob. 10P
Ch. 7.13 - A pistoncylinder device contains helium gas....Ch. 7.13 - A pistoncylinder device contains nitrogen gas....Ch. 7.13 - A pistoncylinder device contains superheated...Ch. 7.13 - The entropy of steam will (increase, decrease,...Ch. 7.13 - During a heat transfer process, the entropy of a...Ch. 7.13 - Steam is accelerated as it flows through an actual...Ch. 7.13 - Heat is transferred at a rate of 2 kW from a hot...Ch. 7.13 - A completely reversible air conditioner provides...Ch. 7.13 - Heat in the amount of 100 kJ is transferred...Ch. 7.13 - In Prob. 719, assume that the heat is transferred...Ch. 7.13 - During the isothermal heat addition process of a...Ch. 7.13 - Prob. 22PCh. 7.13 - During the isothermal heat rejection process of a...Ch. 7.13 - Air is compressed by a 40-kW compressor from P1 to...Ch. 7.13 - Refrigerant-134a enters the coils of the...Ch. 7.13 - A rigid tank contains an ideal gas at 40C that is...Ch. 7.13 - A rigid vessel is filled with a fluid from a...Ch. 7.13 - A rigid vessel filled with a fluid is allowed to...Ch. 7.13 - Prob. 29PCh. 7.13 - One lbm of R-134a is expanded isentropically in a...Ch. 7.13 - Two lbm of water at 300 psia fill a weighted...Ch. 7.13 - A well-insulated rigid tank contains 3 kg of a...Ch. 7.13 - Using the relation ds = (Q/T)int rev for the...Ch. 7.13 - The radiator of a steam heating system has a...Ch. 7.13 - A rigid tank is divided into two equal parts by a...Ch. 7.13 - Prob. 36PCh. 7.13 - An insulated pistoncylinder device contains 5 L of...Ch. 7.13 - Onekg of R-134a initially at 600 kPa and 25C...Ch. 7.13 - Refrigerant-134a is expanded isentropically from...Ch. 7.13 - Refrigerant-134a at 320 kPa and 40C undergoes an...Ch. 7.13 - A rigid tank contains 5 kg of saturated vapor...Ch. 7.13 - A 0.5-m3 rigid tank contains refrigerant-134a...Ch. 7.13 - Steam enters a steady-flow adiabatic nozzle with a...Ch. 7.13 - Steam enters an adiabatic diffuser at 150 kPa and...Ch. 7.13 - R-134a vapor enters into a turbine at 250 psia and...Ch. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - The compressor in a refrigerator compresses...Ch. 7.13 - An isentropic steam turbine processes 2 kg/s of...Ch. 7.13 - Prob. 52PCh. 7.13 - Twokg of saturated water vapor at 600 kPa are...Ch. 7.13 - A pistoncylinder device contains 5 kg of steam at...Ch. 7.13 - Prob. 55PCh. 7.13 - In Prob. 755, the water is stirred at the same...Ch. 7.13 - Prob. 57PCh. 7.13 - Prob. 58PCh. 7.13 - Determine the total heat transfer for the...Ch. 7.13 - Calculate the heat transfer, in kJ/kg. for the...Ch. 7.13 - Prob. 61PCh. 7.13 - An adiabatic pump is to be used to compress...Ch. 7.13 - Prob. 63PCh. 7.13 - Prob. 64PCh. 7.13 - A 30-kg aluminum block initially at 140C is...Ch. 7.13 - A 50-kg copper block initially at 140C is dropped...Ch. 7.13 - A 30-kg iron block and a 40-kg copper block, both...Ch. 7.13 - Prob. 69PCh. 7.13 - Prob. 70PCh. 7.13 - Can the entropy of an ideal gas change during an...Ch. 7.13 - An ideal gas undergoes a process between two...Ch. 7.13 - Prob. 73PCh. 7.13 - Air is expanded from 200 psia and 500F to 100 psia...Ch. 7.13 - Prob. 75PCh. 7.13 - Air is expanded isentropically from 100 psia and...Ch. 7.13 - Which of the two gaseshelium or nitrogenhas the...Ch. 7.13 - Which of the two gasesneon or airhas the lower...Ch. 7.13 - A 1.5-m3 insulated rigid tank contains 2.7 kg of...Ch. 7.13 - An insulated pistoncylinder device initially...Ch. 7.13 - A pistoncylinder device contains 0.75 kg of...Ch. 7.13 - A mass of 25 lbm of helium undergoes a process...Ch. 7.13 - One kg of air at 200 kPa and 127C is contained in...Ch. 7.13 - An insulated rigid tank is divided into two equal...Ch. 7.13 - Air at 27C and 100 kPa is contained in a...Ch. 7.13 - Air at 3.5 MPa and 500C is expanded in an...Ch. 7.13 - Air is compressed in a pistoncylinder device from...Ch. 7.13 - Helium gas is compressed from 90 kPa and 30C to...Ch. 7.13 - Nitrogen at 120 kPa and 30C is compressed to 600...Ch. 7.13 - Five kg of air at 427C and 600 kPa are contained...Ch. 7.13 - Prob. 92PCh. 7.13 - Prob. 93PCh. 7.13 - Prob. 94PCh. 7.13 - The well-insulated container shown in Fig. P 795E...Ch. 7.13 - An insulated rigid tank contains 4 kg of argon gas...Ch. 7.13 - Prob. 97PCh. 7.13 - Prob. 98PCh. 7.13 - Prob. 99PCh. 7.13 - It is well known that the power consumed by a...Ch. 7.13 - Calculate the work produced, in kJ/kg, for the...Ch. 7.13 - Prob. 102PCh. 7.13 - Prob. 103PCh. 7.13 - Saturated water vapor at 150C is compressed in a...Ch. 7.13 - Liquid water at 120 kPa enters a 7-kW pump where...Ch. 7.13 - Water enters the pump of a steam power plant as...Ch. 7.13 - Consider a steam power plant that operates between...Ch. 7.13 - Saturated refrigerant-134a vapor at 15 psia is...Ch. 7.13 - Helium gas is compressed from 16 psia and 85F to...Ch. 7.13 - Nitrogen gas is compressed from 80 kPa and 27C to...Ch. 7.13 - Describe the ideal process for an (a) adiabatic...Ch. 7.13 - Is the isentropic process a suitable model for...Ch. 7.13 - On a T-s diagram, does the actual exit state...Ch. 7.13 - Argon gas enters an adiabatic turbine at 800C and...Ch. 7.13 - Steam at 100 psia and 650F is expanded...Ch. 7.13 - Combustion gases enter an adiabatic gas turbine at...Ch. 7.13 - Steam at 4 MPa and 350C is expanded in an...Ch. 7.13 - Prob. 120PCh. 7.13 - Prob. 121PCh. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - The adiabatic compressor of a refrigeration system...Ch. 7.13 - Prob. 125PCh. 7.13 - Argon gas enters an adiabatic compressor at 14...Ch. 7.13 - Prob. 127PCh. 7.13 - Air enters an adiabatic nozzle at 45 psia and 940F...Ch. 7.13 - An adiabatic diffuser at the inlet of a jet engine...Ch. 7.13 - Hot combustion gases enter the nozzle of a...Ch. 7.13 - The exhaust nozzle of a jet engine expands air at...Ch. 7.13 - Prob. 133PCh. 7.13 - Refrigerant-134a is expanded adiabatically from...Ch. 7.13 - A frictionless pistoncylinder device contains...Ch. 7.13 - Prob. 136PCh. 7.13 - Steam enters an adiabatic turbine steadily at 7...Ch. 7.13 - Prob. 138PCh. 7.13 - Oxygen enters an insulated 12-cm-diameter pipe...Ch. 7.13 - Water at 20 psia and 50F enters a mixing chamber...Ch. 7.13 - Prob. 141PCh. 7.13 - Prob. 142PCh. 7.13 - In a dairy plant, milk at 4C is pasteurized...Ch. 7.13 - Steam is to be condensed in the condenser of a...Ch. 7.13 - An ordinary egg can be approximated as a...Ch. 7.13 - Prob. 146PCh. 7.13 - In a production facility, 1.2-in-thick, 2-ft 2-ft...Ch. 7.13 - Prob. 148PCh. 7.13 - Prob. 149PCh. 7.13 - Prob. 150PCh. 7.13 - Prob. 151PCh. 7.13 - Prob. 152PCh. 7.13 - Prob. 153PCh. 7.13 - Liquid water at 200 kPa and 15C is heated in a...Ch. 7.13 - Prob. 155PCh. 7.13 - Prob. 157PCh. 7.13 - Prob. 158PCh. 7.13 - Prob. 159PCh. 7.13 - Prob. 160PCh. 7.13 - The compressed-air requirements of a plant are met...Ch. 7.13 - Prob. 162PCh. 7.13 - The space heating of a facility is accomplished by...Ch. 7.13 - Prob. 164PCh. 7.13 - Prob. 165PCh. 7.13 - Prob. 166PCh. 7.13 - Prob. 167RPCh. 7.13 - A refrigerator with a coefficient of performance...Ch. 7.13 - What is the minimum internal energy that steam can...Ch. 7.13 - Prob. 170RPCh. 7.13 - What is the maximum volume that 3 kg of oxygen at...Ch. 7.13 - A 100-lbm block of a solid material whose specific...Ch. 7.13 - Prob. 173RPCh. 7.13 - A pistoncylinder device initially contains 15 ft3...Ch. 7.13 - A pistoncylinder device contains steam that...Ch. 7.13 - Prob. 176RPCh. 7.13 - Prob. 177RPCh. 7.13 - Prob. 178RPCh. 7.13 - A 0.8-m3 rigid tank contains carbon dioxide (CO2)...Ch. 7.13 - Air enters the evaporator section of a window air...Ch. 7.13 - Prob. 181RPCh. 7.13 - Prob. 182RPCh. 7.13 - Prob. 183RPCh. 7.13 - Prob. 184RPCh. 7.13 - Helium gas is throttled steadily from 400 kPa and...Ch. 7.13 - Determine the work input and entropy generation...Ch. 7.13 - Prob. 187RPCh. 7.13 - Reconsider Prob. 7187. Determine the change in the...Ch. 7.13 - Prob. 189RPCh. 7.13 - Air enters a two-stage compressor at 100 kPa and...Ch. 7.13 - Three kg of helium gas at 100 kPa and 27C are...Ch. 7.13 - Steam at 6 MPa and 500C enters a two-stage...Ch. 7.13 - Prob. 193RPCh. 7.13 - Prob. 194RPCh. 7.13 - Refrigerant-134a enters a compressor as a...Ch. 7.13 - Prob. 196RPCh. 7.13 - Prob. 197RPCh. 7.13 - Prob. 198RPCh. 7.13 - Prob. 199RPCh. 7.13 - Prob. 200RPCh. 7.13 - Prob. 201RPCh. 7.13 - Prob. 202RPCh. 7.13 - Prob. 203RPCh. 7.13 - Prob. 204RPCh. 7.13 - Prob. 205RPCh. 7.13 - Prob. 206RPCh. 7.13 - Prob. 207RPCh. 7.13 - Prob. 208RPCh. 7.13 - (a) Water flows through a shower head steadily at...Ch. 7.13 - Prob. 211RPCh. 7.13 - Prob. 212RPCh. 7.13 - Prob. 213RPCh. 7.13 - Consider the turbocharger of an internal...Ch. 7.13 - Prob. 215RPCh. 7.13 - Prob. 216RPCh. 7.13 - A 5-ft3 rigid tank initially contains...Ch. 7.13 - Prob. 218RPCh. 7.13 - Show that the difference between the reversible...Ch. 7.13 - Demonstrate the validity of the Clausius...Ch. 7.13 - Consider two bodies of identical mass m and...Ch. 7.13 - Consider a three-stage isentropic compressor with...Ch. 7.13 - Prob. 223RPCh. 7.13 - Prob. 224RPCh. 7.13 - Prob. 225RPCh. 7.13 - The polytropic or small stage efficiency of a...Ch. 7.13 - Steam is condensed at a constant temperature of...Ch. 7.13 - Steam is compressed from 6 MPa and 300C to 10 MPa...Ch. 7.13 - An apple with a mass of 0.12 kg and average...Ch. 7.13 - A pistoncylinder device contains 5 kg of saturated...Ch. 7.13 - Argon gas expands in an adiabatic turbine from 3...Ch. 7.13 - A unit mass of a substance undergoes an...Ch. 7.13 - A unit mass of an ideal gas at temperature T...Ch. 7.13 - Heat is lost through a plane wall steadily at a...Ch. 7.13 - Air is compressed steadily and adiabatically from...Ch. 7.13 - Argon gas expands in an adiabatic turbine steadily...Ch. 7.13 - Water enters a pump steadily at 100 kPa at a rate...Ch. 7.13 - Air is to be compressed steadily and...Ch. 7.13 - Helium gas enters an adiabatic nozzle steadily at...Ch. 7.13 - Combustion gases with a specific heat ratio of 1.3...Ch. 7.13 - Steam enters an adiabatic turbine steadily at 400C...Ch. 7.13 - Liquid water enters an adiabatic piping system at...Ch. 7.13 - Liquid water is to be compressed by a pump whose...Ch. 7.13 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 7.13 - Helium gas is compressed steadily from 90 kPa and...Ch. 7.13 - Helium gas is compressed from 1 atm and 25C to a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant ammonia enters the compressor of a refrigerator as superheated vapor at 0.14 MPa, -20°C at a rate of 0.04 kg/s, and leaves at 0.8 MPa, 50°C. The refrigerant is cooled in the condenser to 0.75 MPa and is throttled to 0.14 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, determine the rate of heat removal from the refrigerated space. kWarrow_forwardSteam enters an adiabatic turbine at a given 9,200 kpa and the temperature is 475 degree celsius with a mass flow rate of 87 kg/s. The surrounding temperature is 300 kelvin. The effeiciency of the turbin is also said to be 0.75. With this given data, what would be the entropy generation rate, value of ideal work, and value of the lost work? note: steam is superheated.arrow_forwardAccording to the Carnot cycle, the thermal efficiency of a working heat machine is 28%, and water vapor is used as the working fluid. Heat transfer to the working fluid occurs at 350°C, and at this time the fluid passes from a saturated liquid state to a saturated vapor state. Since 5 kg of fluid circulates per hour in the cycle, find the power of this heat machine using the entropy of evaporation.arrow_forward
- In a refrigerant-cooling system, 1.5 kg/s of refrigerant 134a flows at steady state through a coil having an inside diameter of 0.05 m. The refrigerant enters the tube as superheated vapor at 700 kPa and 70°C and leaves at 32°C and 690 kPa. You want to heat the water from of 25°C to 35°C by placing the coil inside a box and having the water enter and leave the box at a constant mass flow rate. Please answer the following: Please answer the following. a. Create a schematic that accurately describes the situation given in the problem. Include your chosen boundary and the energy interactions present across the boundary. You will select from which side the cold water enters the box; that is, closer to the inlet of the refrigerant at 70°C or closer to the exit of the refrigerant at 32°C. b. Represent the process for the refrigerant on a T-v diagram. Show the isobars corresponding to each state with their value. Include values on the axes using customary units. c. For this part you are going…arrow_forwardA flash chamber has R-134A entering with a quality of 0.25 at a pressure of 5 bar. The saturated liquid from the flash chamber goes through a throttling value, an evaporator, and a compressor where it is compressed to 5 bar and 40°C. The saturated vapor from the flash chamber recombines with the remaining refrigerant in an open heat exchanger at a pressure of 5 bar. What are the enthalpy and temperature of the refrigerant exiting the heat exchanger?arrow_forwardSteam at 28 bar and 50 degrees Celsius superheat is passed through a turbine and expanded to a pressure where the steam is dry and saturated. It is then reheated at constant pressure to its original temperature and then expanded to the condenser pressure of 0.2 bar. The expansion being isentropic. Draw the T-S diagram. Find (a) Work done per kg of steam and (b) thermal efficiency with and without reheatsarrow_forward
- 2 kg of air as an ideal gas undergoes a Carnot refrigeration cycle as shown in the figure. The isothermal expansion occurs at 300K and isothermal compression occurs at 600K. The heat transfer to air during isothermal expansion is 125 kJ. Pressure at the end of isothermal expansion is 75 kPa. | 4 TH 3 1 Determine the entropy change at each step of the cycle. Determine the entropy change during the cycle Indicate which process (if any) is isentropic in this cycle.arrow_forwardRefrigerant 134a enters an air-cooled condenser at 12 bars and 60°C, and leaves as a saturated liquid at 12 bars. Atmospheric air at 35°C is blown over the condenser tubes and leaves at 45°C. The heat transfer between the two flfluid streams equals 25 MJ/h. Changes in kinetic and potential energy are negligible. Make any reasonable assumptions if necessary. Determine (a) the mass flow rates for the R-134a and the air, in kg/h, Hint: Use the energy conservation on each of the ⁅ uid streams separately. (b) the entropy production rate in the condenser, in kJ h-1K-1, Hint: Use the entropy balance over the whole condenser. (c) the change in kinetic energy for R-134a if the pipe diameter is 2.0 cm, in kJ/h (d) Draw the T-s diagram for the process for R-134a.arrow_forwardA car wash service uses 150 litre of pressurized (3 bar) warm water (45oC) to wash each car. It takes 10 min to wash each car. The service has 10 washing lanes, and it is open from (14:00 to 21:00) every day and 360 day per year. Each day 400 cars are washed. Fresh water at 1 bar pressure and 15oC is pressurized in a pump and then heated to desired temperature. Assume pump operates adiabatically and its efficiency is 85%, which is defined as the ideal power input divided by the actual power input. The ideal power input is the product of the volumetric flow rate times the pressure drop across the pump. All the other equipment of the car wash uses 5 kW of power during operation. Current (first alternative) is to buy electricity from the utility and use a natural gas fired boiler to heat the water. Assume natural gas furnace used in heating has 90% overall efficiency defined as heating provided water to heating released from fuel. The heating value of the natural gas (CH4) is 55.5 MJ/kg,…arrow_forward
- In a reversible isothermal expansion process the fluid expands from 10 bar and 2 m3 to 0.2 bar and 10 m3 . During the process the heat supplied is 100 kW. The work done during the process isarrow_forwardProperties of Carbon Dioxide: h @ 220 KPa and -5°C = 350 KJ/kg br@ 25°C = 223.65 KJ/kg b: @ 22°C = 220.75 KJ/kg h. @ 220 KPa = 347.13 KJ/kg %D %3D Saturated Vapor Carbon Dioxide refrigerant at 220 KPa leaves the evaporator and enters the compressor at -5 °C. The refrigerant leaves the condenser as saturate liquid at 25 °C and enters the expansion valve at 22 °C. Heat rejected from the condenser amount 90 KW. The work to the compressor is 60 KJ/kg while the heat lost from the compressor is 5 KJ/kg. If 2.5 KJ/kg of heat are lost in the piping between the compressor and condenser. Solve for QA in KW.arrow_forwardAir goes through a Brayton cycle gas turbine, entering the compressor at 11 °C and 108 kPa. When it reaches the turbine inlet, the air is at 1,061 °C and 1.23 MPa. What is the net change in specific enthalpy of the working fluid after going through the compressor and heat addition processes? You may assume that the specific heat capacity c, is a constant 1.005 --1. kJ-kg 1.K1 throughout the whole cycle. Give your answer in kJ-kg1 to one decimal place.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license