In Problems 79-84, use the following discussion. The formula can be used to approximate the number of hours of daylight D when the declination of the Sun is at a location north latitude for any date between the vernal equinox and autumnal equinox. The declination of the Sun is defined as the angle i between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth. See the figure. To use the formula, must be expressed in radians.
Approximate the number of hours of daylight at the Equator ( north latitude) for the following dates:
Summer solstice
Vernal equinox
July 4
What do you conclude about the number of hours of daylight throughout the year for a location at the Equator?
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the equator ( north latitude), for the following dates:
a. Summer solstice .
Answer to Problem 73AYU
Solution:
a. hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
a. Summer solstice .
Formula used:
Calculation:
a. Summer solstice north latitude.
Convert degree into radians.
hours.
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the equator ( north latitude), for the following dates:
b. Vernal equinox .
Answer to Problem 73AYU
Solution:
b. hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
b. Vernal equinox .
Formula used:
Calculation:
b. Vernal equinox ; north latitude.
Convert degree into radians.
hours.
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the equator ( north latitude), for the following dates:
c. July 4 .
Answer to Problem 73AYU
Solution:
c. hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
c. July 4 .
Formula used:
Calculation:
c. July 4 north latitude.
Convert degree into radians.
hours.
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the equator ( north latitude), for the following dates:
d. The number of hours of daylight throughout the year for a location at the equator.
Answer to Problem 73AYU
Solution:
d. The number of hours of daylight throughout the year for a location at the equator hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
d. north latitude .
Formula used:
Calculation:
d. The number of hours of daylight throughout the year for a location at the equator hours.
Chapter 7 Solutions
Precalculus Enhanced with Graphing Utilities
Additional Math Textbook Solutions
Basic Business Statistics, Student Value Edition
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
Pre-Algebra Student Edition
College Algebra (7th Edition)
- nd ave a ction and ave an 48. The domain of f y=f'(x) x 1 2 (= x<0 x<0 = f(x) possible. Group Activity In Exercises 49 and 50, do the following. (a) Find the absolute extrema of f and where they occur. (b) Find any points of inflection. (c) Sketch a possible graph of f. 49. f is continuous on [0,3] and satisfies the following. X 0 1 2 3 f 0 2 0 -2 f' 3 0 does not exist -3 f" 0 -1 does not exist 0 ve tes where X 0 < x <1 1< x <2 2arrow_forwardNumerically estimate the value of limx→2+x3−83x−9, rounded correctly to one decimal place. In the provided table below, you must enter your answers rounded exactly to the correct number of decimals, based on the Numerical Conventions for MATH1044 (see lecture notes 1.3 Actions page 3). If there are more rows provided in the table than you need, enter NA for those output values in the table that should not be used. x→2+ x3−83x−9 2.1 2.01 2.001 2.0001 2.00001 2.000001arrow_forwardFind the general solution of the given differential equation. (1+x)dy/dx - xy = x +x2arrow_forwardEstimate the instantaneous rate of change of the function f(x) = 2x² - 3x − 4 at x = -2 using the average rate of change over successively smaller intervals.arrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = 1 to x = 6. Give your answer as a simplified fraction if necessary. For example, if you found that msec = 1, you would enter 1. 3' −2] 3 -5 -6 2 3 4 5 6 7 Ꮖarrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = -2 to x = 2. Give your answer as a simplified fraction if necessary. For example, if you found that msec = , you would enter 3 2 2 3 X 23arrow_forwardA function is defined on the interval (-π/2,π/2) by this multipart rule: if -π/2 < x < 0 f(x) = a if x=0 31-tan x +31-cot x if 0 < x < π/2 Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0. a= b= 3arrow_forwardUse the definition of continuity and the properties of limits to show that the function is continuous at the given number a. f(x) = (x + 4x4) 5, a = -1 lim f(x) X--1 = lim x+4x X--1 lim X-1 4 x+4x 5 ))" 5 )) by the power law by the sum law lim (x) + lim X--1 4 4x X-1 -(0,00+( Find f(-1). f(-1)=243 lim (x) + -1 +4 35 4 ([ ) lim (x4) 5 x-1 Thus, by the definition of continuity, f is continuous at a = -1. by the multiple constant law by the direct substitution propertyarrow_forward1. Compute Lo F⚫dr, where and C is defined by F(x, y) = (x² + y)i + (y − x)j r(t) = (12t)i + (1 − 4t + 4t²)j from the point (1, 1) to the origin.arrow_forward2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k. (A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential function (x, y, z) for F. Remark: To find o, you must use the method explained in the lecture. (B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on an object moves along any path from (0,1,2) to (2, 1, -8).arrow_forwardhelp pleasearrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning