Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 8PQ
(a)
To determine
The sketch of the Mars-Deimos system.
(b)
To determine
The semimajor axis of Deimos’s orbit.
(c)
To determine
The distance of mars from the center of the orbit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The center of a moon of mass m = 8 × 1023 kg is a distance D = 97 × 105 km from the center of a planet of mass M = 10.9 × 1025 kg. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero.
a. Derive an expression for x.
b. Calculate x in kilometers, given the variables in the beginning of the problem.
The planet Mars is orbited by two small moons, Phobos and Deimos. Both moons
have circular orbits. Use Kepler's Third Law in Newtonian form to compute both the
product GM(Mars), where G is Newton's constant and M(Mars) is the mass of Mars, and
the mass of Mars itself from the orbital data for the two moons and Newton's constant.
2.
a)
Phobos: P = 0.3189 days, a = 9377 km.
b)
Deimos: P = 1.2624 days, a = 23,460 km.
%3D
NOTE - The orbital periods are in earth days; 1 day = 24 hours = 86,400 s.
%3D
%3D
Newton's constant is G = 6.673 x 10^(-11) m^3/kg s^2.
The orbit of Earth’s moon has a period of 27.3 days and a radius (semi-major axis) of 2.57 ×10-3 A.U. = 3.85 × 105 km. What is the mass of Earth? What are the units?
Chapter 7 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 7.1 - What important experimental skills can we learn...Ch. 7.2 - Three possible planetary orbits are shown in...Ch. 7.2 - Prob. 7.3CECh. 7.2 - Prob. 7.4CECh. 7.2 - Todays employees are rewarded for thinking outside...Ch. 7 - We use the terms sunset and sunrise. In what way...Ch. 7 - Prob. 2PQCh. 7 - For many years, astronomer Percival Lowell...Ch. 7 - Prob. 4PQCh. 7 - Prob. 5PQ
Ch. 7 - Io and Europa are two of Jupiters many moons. The...Ch. 7 - Model the Moons orbit around the Earth as an...Ch. 7 - Prob. 8PQCh. 7 - Prob. 9PQCh. 7 - Prob. 10PQCh. 7 - Prob. 11PQCh. 7 - Prob. 12PQCh. 7 - A massive black hole is believed to exist at the...Ch. 7 - Since 1995, hundreds of extrasolar planets have...Ch. 7 - When Sedna was discovered in 2003, it was the most...Ch. 7 - Prob. 16PQCh. 7 - The mass of the Earth is approximately 5.98 1024...Ch. 7 - Prob. 18PQCh. 7 - Prob. 19PQCh. 7 - A black hole is an object with mass, but no...Ch. 7 - Prob. 21PQCh. 7 - Prob. 22PQCh. 7 - The Lunar Reconnaissance Orbiter (LRO), with mass...Ch. 7 - A Suppose a planet with mass m is orbiting star...Ch. 7 - Prob. 25PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Saturns ring system forms a relatively thin,...Ch. 7 - Prob. 28PQCh. 7 - Find the magnitude of the Suns gravitational force...Ch. 7 - Prob. 30PQCh. 7 - Prob. 31PQCh. 7 - Prob. 32PQCh. 7 - Prob. 33PQCh. 7 - Prob. 34PQCh. 7 - Prob. 35PQCh. 7 - In your own words, describe the difference between...Ch. 7 - The Sun has a mass of approximately 1.99 1030 kg....Ch. 7 - Prob. 38PQCh. 7 - Prob. 39PQCh. 7 - Prob. 40PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Prob. 42PQCh. 7 - Prob. 43PQCh. 7 - Prob. 44PQCh. 7 - Figure P7.45 shows a picture of American astronaut...Ch. 7 - Prob. 46PQCh. 7 - Prob. 47PQCh. 7 - Prob. 48PQCh. 7 - Prob. 49PQCh. 7 - Prob. 50PQCh. 7 - The International Space Station (ISS) experiences...Ch. 7 - Prob. 52PQCh. 7 - Two black holes (the remains of exploded stars),...Ch. 7 - Prob. 54PQCh. 7 - Prob. 55PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 57PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 59PQCh. 7 - You are a planetary scientist studying the...Ch. 7 - Prob. 61PQCh. 7 - Prob. 62PQCh. 7 - Planetary orbits are often approximated as uniform...Ch. 7 - Prob. 64PQCh. 7 - Prob. 65PQCh. 7 - Prob. 66PQCh. 7 - Prob. 67PQCh. 7 - Prob. 68PQCh. 7 - Prob. 69PQCh. 7 - Prob. 70PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Saturns ring system forms a relatively thin, circular disk in the equatorial plane of the planet. The inner radius of the ring system is approximately 92,000 km from the center of the planet, and the outer edge is about 137,000 km from the center of the planet. The mass of Saturn itself is 5.68 1026 kg. a. What is the period of a particle in the outer edge compared with the period of a particle in the inner edge? b. How long does it take a particle in the inner edge to move once around Saturn? c. While this inner-edge particle is completing one orbit abound Saturn, how far around Saturn does a particle on the outer edge move?arrow_forward(a) In order to keep a small satellite from drifting into a nearby asteroid, it is placed in orbit with a period of 3.02 hours and radius of 2.0 km. What is the mass of the asteroid? (b) Does this mass seem reasonable for the size of the orbit?arrow_forward(a) Suppose that your measured weight at the equator is one-half your measured weight at the pole on a planet whose mass and diameter are equal to those of Earth. What is the rotational period of the planet? (b) Would you need to take the shape of this planet into account?arrow_forward
- A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”. The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days? Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law. Calculate the star’s luminosity, L, in terms of the luminosity of the sun (L☉), Note: (LL=MM4where L ~ 4 × 1026 W ). The radius of this planet is 1.5 times the radius of Jupiter. Assuming its equilibrium temperature is the temperature at which the planet radiates as much energy as it receives from its star, estimate the temperature of the planet. The value of the planet’s albedo is 0.8. (NOTE: The intensity of the star’s radiant power at a distance d from the star is…arrow_forwardThe asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 5.0 earth years. Assume a 365.25-days year and MSun = 1.99 × 1030 kg. 1. What is the asteroid's orbital radius? Express your answer in two significant figures. 2. What is the asteroid's orbital speed? Express answer in two significant figures.arrow_forwardDeimos, a moon of Mars, is about 12 km in diameter with mass 2.0 × 10¹5 kg. Suppose you are stranded alone on Deimos and want to play a one-person game of baseball. You would be the pitcher, and you would be the batter! a. With what speed would you have to throw a baseball so that it would go into a circular orbit just above the surface and return to you so you could hit it? Do you think you could actually throw it at this speed? b. How long (in hours) after throwing the ball should you be ready to hit it? Would this be an action-packed baseball game?arrow_forward
- What is the distance from an asteroid to a sunarrow_forward2. a. Consider two planets orbiting a distant star. Planet A is further from the star. A is orbiting at a speed of 14625 m/s and has an orbital period of 12.45 years. What is the radius of A's orbit? Hint: remember to convert the period into seconds. 4.57E11 Previous submissions: 457000000000 b. What is the mass of the star? 1.465E30 Previous submissions: 1.465e30 kg c. Planet B is closer in. B has a larger velocity of 38500 m/s. What is the radius of B's orbit? 6.598E10 Previous submissions: m 65980000000 m m kg m incorrect incorrect V incorrectarrow_forwardWhich of the following statements cannot be supported by Kepler's laws of planetary motion? a The distance of a planet around the sun changes throughout its orbit. b The speed a planet is moving around the sun changes throughout the year. c The orbital period of Mercury can be calculated using the orbital period of Jupiter and the average distances of both planets. d The age of the four largest planets can be determined using the age of the four smallest planets and the average distances of each planet.arrow_forward
- 13. The diagrams represent Saturn and one of its moons, Titan. Which diagram shows the distance between the two points that should be used to calculate the gravitational attraction between Saturn and Titan?arrow_forwardGPS (Global Positioning System) satellites orbit at an altitude of 2.7x10^7m. You may want to review (Pages 392-398) Part A Find the orbital period Express your answer using two significant figures. 19 ΑΣφ ? T- h Submit Part B Find the orbital speed of such a satelite. Express your answer using two significant figures. 150 AC ? Submit Request Answerarrow_forwardMars has a mass of 6.39 × 1023 kg and radius 3.39 x 106 m. What is the magnitude of the gravitational acceleration g on Mars' surface, in m/s2? Use G = 6.67 x 10-11 N-m2/kg?. Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY