
Concept explainers
(a)
The proof for the statement that when
(a)

Answer to Problem 69PQ
It is showed that when
Explanation of Solution
Write the equation for the gravitational field for a mass.
Here,
Write the expression for the difference in gravitational field at a distance
Use equation (I) to find the expression for
Use equation (I) to find the expression for
Put the above two equations in equation (II).
Expand the numerator of the above equation.
It is given that
Conclusion:
Neglect
Thus, it is showed that when
(b)
The difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole.
(b)

Answer to Problem 69PQ
The difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is
Explanation of Solution
The expression for the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is derived in part (a).
Write the expression for the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole.
Conclusion:
Given that the mass of the black hole is one solar mass, the length of the person is
Substitute
Therefore, the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is
(c)
Whether the difference in gravitational field found in part (b) large enough to spaghettify the person.
(c)

Answer to Problem 69PQ
The difference in gravitational field found in part (b) is large enough to spaghettify the person.
Explanation of Solution
Spaghettification is the term used by Stephen Hawking to describe what happens to someone who falls feet first into a small but highly massive object. Since the gravitational field at the person’s feet is sufficiently higher than the gravitational field at the head, the person gets stretched out like a spaghetti noodle.
In part (b), it is found that the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is
Conclusion:
Since the feet of the person are accelerating toward the black hole
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Please solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





