Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 65PQ
(a)
To determine
The orbital period of Jupiter, and compare the result with answer obtained by using expression of Newton’s version of Kepler’s law.
(b)
To determine
Explain whether equation (I) holds for Moon orbiting the Earth.
(c)
To determine
Explain whether equation (I) holds for two asteroids orbiting Earth..
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This is a proportional reasoning calculation. You will want to set up equations, but mostly to look at how the orbital distance affects the orbital velocity, or
to set up a ratio. (Once you know how it changes you'll have to multiply by the value at the surface to get an answer in m/s.)
At the surface of the exoplanet HD179079 b, the orbital velocity would be 1.72E+4 m/s.
What would the orbital velocity be 8 radii above the surface?
m/s.
Note: If your answer requires scientific notation, remember that OWL uses "e" notation: 1.1 x 105 is 1.1e5 to OWL.
Find an expression for the square of the orbital period.
Express your answer in terms of G, M, R, and π.
The potential energy U of an object of mass m that is separated by a distance R from an object of mass M is given by
U=−G*Mm/R.
What is the kinetic energy K of the satellite?
Express your answer in terms of the potential energy U.
Europa orbits Jupiter at a distance of 6.7 x 108 m from Jupiter's cloudtops
(the surface of the planet). If Jupiter's mass is 1.9 x 1027 kg and radius is
6.8 x 107 m, what is the speed of Europa as it orbits in m/s?
Round to the nearest hundredth. Don't worry about putting units, just put
the number.
Chapter 7 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 7.1 - What important experimental skills can we learn...Ch. 7.2 - Three possible planetary orbits are shown in...Ch. 7.2 - Prob. 7.3CECh. 7.2 - Prob. 7.4CECh. 7.2 - Todays employees are rewarded for thinking outside...Ch. 7 - We use the terms sunset and sunrise. In what way...Ch. 7 - Prob. 2PQCh. 7 - For many years, astronomer Percival Lowell...Ch. 7 - Prob. 4PQCh. 7 - Prob. 5PQ
Ch. 7 - Io and Europa are two of Jupiters many moons. The...Ch. 7 - Model the Moons orbit around the Earth as an...Ch. 7 - Prob. 8PQCh. 7 - Prob. 9PQCh. 7 - Prob. 10PQCh. 7 - Prob. 11PQCh. 7 - Prob. 12PQCh. 7 - A massive black hole is believed to exist at the...Ch. 7 - Since 1995, hundreds of extrasolar planets have...Ch. 7 - When Sedna was discovered in 2003, it was the most...Ch. 7 - Prob. 16PQCh. 7 - The mass of the Earth is approximately 5.98 1024...Ch. 7 - Prob. 18PQCh. 7 - Prob. 19PQCh. 7 - A black hole is an object with mass, but no...Ch. 7 - Prob. 21PQCh. 7 - Prob. 22PQCh. 7 - The Lunar Reconnaissance Orbiter (LRO), with mass...Ch. 7 - A Suppose a planet with mass m is orbiting star...Ch. 7 - Prob. 25PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Saturns ring system forms a relatively thin,...Ch. 7 - Prob. 28PQCh. 7 - Find the magnitude of the Suns gravitational force...Ch. 7 - Prob. 30PQCh. 7 - Prob. 31PQCh. 7 - Prob. 32PQCh. 7 - Prob. 33PQCh. 7 - Prob. 34PQCh. 7 - Prob. 35PQCh. 7 - In your own words, describe the difference between...Ch. 7 - The Sun has a mass of approximately 1.99 1030 kg....Ch. 7 - Prob. 38PQCh. 7 - Prob. 39PQCh. 7 - Prob. 40PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Prob. 42PQCh. 7 - Prob. 43PQCh. 7 - Prob. 44PQCh. 7 - Figure P7.45 shows a picture of American astronaut...Ch. 7 - Prob. 46PQCh. 7 - Prob. 47PQCh. 7 - Prob. 48PQCh. 7 - Prob. 49PQCh. 7 - Prob. 50PQCh. 7 - The International Space Station (ISS) experiences...Ch. 7 - Prob. 52PQCh. 7 - Two black holes (the remains of exploded stars),...Ch. 7 - Prob. 54PQCh. 7 - Prob. 55PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 57PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 59PQCh. 7 - You are a planetary scientist studying the...Ch. 7 - Prob. 61PQCh. 7 - Prob. 62PQCh. 7 - Planetary orbits are often approximated as uniform...Ch. 7 - Prob. 64PQCh. 7 - Prob. 65PQCh. 7 - Prob. 66PQCh. 7 - Prob. 67PQCh. 7 - Prob. 68PQCh. 7 - Prob. 69PQCh. 7 - Prob. 70PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardNewtons version of Kepler's third law is P2=4pi2/(G(M1+M2)) x a3. Since the square of the period P varies inversely with the Sum of the masses (M1+M2), the period itself depends on the inverse square root of the object masses. If a solar system has a star that is 3.9 times as massive as our Sun, and if that solar system has Earths exact twin, what is the orbital period of that planets months ?arrow_forward
- On October 15, 2001, a planet was discovered orbiting around the star HD68988. Its orbital distance was measured to be Part A 10.5 million kilometers from the center of the star, and its orbital period was estimated at 6.3 days. What is the mass of HD68988? For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Kepler's third law. Express your answer in kilograms. ΑΣφ ? M = kg Submit Request Answer Part B What is the mass of HD68988? Express your answer in terms of our sun's mass. M = Msun Submit Request Answerarrow_forwardThe center of a moon of mass m = 8 × 1023 kg is a distance D = 97 × 105 km from the center of a planet of mass M = 10.9 × 1025 kg. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero. a. Derive an expression for x. b. Calculate x in kilometers, given the variables in the beginning of the problem.arrow_forwardIn recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (MsunMsun = 1.99 ×× 103030 kgkg) at a distance of 1.50 ×× 101111 mm, called 1 astronomical unit (1 auau). Others have extreme orbits that are much different from anything in our solar system. The following problem relates to one of these planets that follows circular orbit around its star. WASP-32b orbits with a period of only 2.7 days a star with a mass that is 1.1 times that of the sun. How many au from the star is this planet? Assume the orbital period of earth is 365 days. Express your answer in astronomical units.arrow_forward
- To find some of the parameters characterizing an object moving in a circular orbit.The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit: a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass M. For all parts of this problem, where appropriate, use G for the universal gravitational constant. Find the orbital speed v of a satellite in a circular orbit of radius R around a planet of mass M . Express the orbital speed in terms of G , M , and R . Find the kinetic energy K of a satellite with mass m in a circular orbit of radius R around a planet of mass M . Express your answer in terms of m , M , G , and R . Find the satellite's orbital…arrow_forwardA person's weight W varies inversely as the second power of the distance d from the center of a planet. A person weights 160 pounds as a distance of 2000 miles from the center of the planet Krypton. How much does the same person weigh at a distance of 2500 miles from the center of the planet? 102.4 Ibs 200.0 Ibs 100.0 Ibs 150.0 Ibsarrow_forwardYou are a scientist exploring a mysterious planet. You have performed measurements and know the following things: The planet has radius d. It is orbiting his star in a circular orbit of radius b. it takes time T to complete one orbit around the star. the free-fall acceleration on the surface of the planet is a. Derive an expression for the mass and of the star in terms of b,T, and G the universal gravitational constant.arrow_forward
- Two identical stars with mass M orbit around their center of mass. Each orbit is circular and has radius R, so that the two stars are always on opposite sides of the circle. Part A Find the gravitational force of one star on the other. Express your answer in terms of G, M, R. Πν ΑΣφ ? F = Part B Find the orbital speed of each star. Express your answer in terms of G, M, R. να ΑΣΦ7 ? Part Carrow_forwardThe equation for exact gravity force, F = -Gm integral(p_vec * (p^2)^(-3/2) vdt). p would be the distance from B to P. I assume that vdt is dm.arrow_forwardAn object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m, M, h, R, and gravitational constant G.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University